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Abstract 
Changes in gene expression are a key driver of phenotypic evolution, leading to a persistent interest in the evolution of transcriptomes. 
Traditionally, gene expression is modeled as a continuous trait, leaving qualitative transitions largely unexplored. In this paper, we detail the 
development of new Bayesian inference techniques to study the evolutionary turnover of organ-specific transcriptomes, which we define as 
instances where orthologous genes gain or lose expression in a particular organ. To test these techniques, we analyze the transcriptomes of 
2 male reproductive organs, testes and accessory glands, across 11 species of the Drosophila melanogaster species group. We first 
discretize gene expression states by estimating the probability that each gene is expressed in each organ and species. We then define a 
phylogenetic model of correlated transcriptome evolution in 2 or more organs and fit it to the expression state data. Inferences under this 
model imply that many genes have gained and lost expression in each organ, and that the 2 organs experienced accelerated transcriptome 
turnover on different branches of the Drosophila phylogeny.
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Introduction
Phenotypic evolution, broadly speaking, can result from 3 
general mechanisms: gains and losses of genes; mutations in 
the coding sequences of genes, leading to changes in protein 
functions; and regulatory mutations, which lead to changes 
in gene expression. While the exact balance between these 
modes of genetic change in driving the origin of new pheno
types is a debated topic, it is clear that regulatory evolution 
plays a prominent role (King and Wilson 1975; Hoekstra 
and Coyne 2007; Wray 2007; Carroll 2008; Stern and 
Orgogozo 2008 ; Courtier-Orgogozo et al. 2020). Across a di
verse range of taxa and traits, changes in the expression of or
thologous genes are pivotal in creating major phenotypic 
differences within and between species (e.g. Rebeiz et al. 
2009; Fraser et al. 2010; Loehlin et al. 2019; Kowalczyk 
et al. 2022; Marand et al. 2023).

RNA sequencing (RNA-seq) technology has enabled quan
tification of gene expression levels for the entire transcriptome 
across diverse biological conditions and developmental stages 
(Mortazavi et al. 2008; Wang et al. 2009; Marguerat and 
Bähler 2010; Hrdlickova et al. 2017). As a result, RNA-seq 
has become essential for studying regulatory evolution, pro
viding comprehensive and quantitative data for inferring 
large- and small-scale changes in transcriptomes associated 
with adaptive evolution (Harrison et al. 2012; Wittkopp and 
Kalay 2012; Todd et al. 2016). Transcriptome-level studies 
of gene expression evolution have largely focused on quantita
tive differences between species, modeling a gene’s expression 

as a continuous trait. Indeed, most evolutionary changes in 
gene expression are of a quantitative nature (Rifkin et al. 
2003; Brawand et al. 2011; Harrison et al. 2012; Romero 
et al. 2012; Coolon et al. 2014; Nourmohammad et al. 
2017; Cardoso-Moreira et al. 2019). By contrast, qualitative 
changes, manifested as discrete gain and loss of gene expres
sion in a particular tissue over evolutionary time (“transcrip
tome turnover”), have received comparatively little attention 
(Mika et al. 2021, 2022). Consequently, questions about the 
rates of transcriptome turnover, the consistency of these rates 
over time and among lineages, and the degree of correlation in 
turnover rates between different organs remain unresolved. 
This may be an important deficit in our understanding of 
phenotypic evolution given the many examples where gain 
or loss of gene expression in an organ has a profound impact 
on its structure or function (Glassford et al. 2015; Hu et al. 
2018; Kellenberger et al. 2023; Molina-Gil et al. 2023).

Studying gene expression at a qualitative level brings with it 
two significant advantages. The first is biological. Relative to 
quantitative changes, deactivation of a gene, or activation of 
an ancestrally inactive gene, in a particular organ might be ex
pected to have a more profound impact on phenotypic evolu
tion (Harlin-Cognato et al. 2006; Wray 2007; Carroll 2008; 
Tanaka et al. 2011; Glassford et al. 2015; Thompson et al. 
2016, 2018; Martinson et al. 2017; Hu et al. 2018). The gen
erality of this idea, which is currently supported by anecdotal 
examples, needs to be tested systematically at the genome- 
wide level. The second advantage is technical. If inferred reli
ably, discrete expression states should be less sensitive to 
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technical factors such as sequencing depth and library size, dif
ferences in cell type composition caused by dissection variabil
ity, and the well-documented problems of comparing 
compositional values such as TPM or FPKM between tissues 
and species (Brawand et al. 2011; Dillies et al. 2013; Li et al. 
2014; Musser and Wagner 2015). While the effect of some 
of these variables on cross-species and cross-tissue quantita
tive analyses can in principle be minimized through normaliza
tion approaches, selecting an appropriate evolutionary model 
for data under complex transformations and normalization 
schemes can be challenging to implement and interpret 
(Vandesompele et al. 2002; de Jonge et al. 2007; Brawand 
et al. 2011; Dillies et al. 2013; Chen et al. 2014; Quinn et al. 
2018; Cardoso-Moreira et al. 2019; Zhou et al. 2019; 
Dimayacyac et al. 2023; Mantica et al. 2024).

The main obstacle to investigating transcriptome turnover on 
a genome-wide scale is the difficulty of translating the continu
ous RNA-seq data (TPM or FPKM) into discrete (ON/OFF) 
gene expression states. Many genes that play important roles 
in development can be expressed at low levels in just a few cells, 
making their expression difficult to detect reliably. Conversely, 
some genes that are not actively expressed in a particular tissue 
may nevertheless be detected at non-zero levels in a transcrip
tome sample due to technical artifacts or non-specific transcrip
tion that occurs throughout the genome (Singh and Petrov 
2007; Struhl 2007; Schwanhäusser et al. 2011; Jensen et al. 
2013; Wagner et al. 2013; Artieri and Fraser 2014; Kin et al. 
2015; Lenive et al. 2016; Ham et al. 2020). Historically, gene 
expression states in transcriptomes have been discretized using 
hard expression thresholds; for example, genes present above 
1–3 TPM may be considered actively expressed, while those be
low 1 TPM are assigned as inactive (Mortazavi et al. 2008; 
Hebenstreit et al. 2011; Wagner et al. 2013; Huang et al. 
2015; Cridland et al. 2020; Mika et al. 2021, 2022).

In some cases, specific expression cut-offs are well justified 
on mechanistic biological grounds implied by chromatin 
marks associated with active or repressed transcription 
(Singh and Petrov 2007; Ernst et al. 2011; Hart et al. 2013; 
Wagner et al. 2013). However, fixed cut-offs on relative 
expression levels are poorly suited to cross-species and cross- 
tissue comparisons, since it is far from clear that a single 
expression threshold can accurately distinguish between ac
tive expression and transcriptional noise in all genes, species, 
and tissues, especially when the species are distantly related 
and/or the tissues differ strongly in transcriptome complexity. 
A change in expression of a small subset of highly expressed 
genes will alter the relative expression of the rest of the distribu
tion thus shifting the threshold without any changes in expres
sion among the rest of the genes. In fact, our recent work has 
shown that the boundary between active expression and noise 
is different even among tissues that are physiologically similar 
(e.g. different primate brain regions; Thompson et al. 2020).

To develop a more objective and generally applicable ap
proach to discretizing gene expression states, we recently cre
ated and validated a method, zigzag (Thompson et al. 2020), 
for inferring gene expression states from replicated RNA-seq 
datasets. zigzag uses Markov chain Monte Carlo to estimate 
the posterior probability of active expression (the “ON” state) 
for each gene in each tissue using a well-defined statistical 
model and testable prior assumptions, enabling easy valid
ation. zigzag achieves this by learning universal landmarks 
in transcriptome datasets that distinguish between active and 
inactive genes (Hebenstreit et al. 2011; Hart et al. 2013; 

Wagner et al. 2013; Huang et al. 2015; Thompson et al. 
2020; Costa et al. 2022). This method was shown to be sensi
tive enough to correctly classify expression states of transcrip
tion factors expressed in only a few cells in the drosophila 
testes while classifying smell and taste receptor genes as largely 
inactive in the same tissue despite detecting reads mapping to 
these genes (Thompson et al. 2020). This tool allows research
ers to either use the probabilities in downstream analyses or 
set thresholds based on the probabilities which, unlike thresh
olds on relative measures, are directly comparable between 
species and tissues. The ability to classify gene expression 
states probabilistically using zigzag opens the way for investi
gating the evolutionary turnover of tissue-specific transcrip
tomes (i.e. the transition of conserved genes between OFF 
and ON expression states in each tissue) using well-established 
phylogenetic models of discrete-trait evolution.

In this study, we present a pipeline that integrates zigzag 
with phylogenetic comparative methods to infer the evolution
ary dynamics of transcriptome turnover. To test this pipeline, 
we used RNA-seq datasets from 2 male reproductive organs, 
testes and seminal fluid-producing accessory glands (AGs), 
across 11 Drosophila species. We chose these organs as the 
test subject for our approach because previous studies have 
shown that the male reproductive system evolves faster than 
other tissues at the level of both protein sequence (Begun 
et al. 2000; Kern et al. 2004; Haerty et al. 2007; Patlar et al. 
2021) and gene expression (Meiklejohn et al. 2003; Ranz 
et al. 2003; Rifkin et al. 2003; Zhang et al. 2007; Pal et al. 
2023), suggesting that we may be able to estimate the rate of 
transcriptome turnover even with a limited number of taxa.

With this analysis pipeline we were able to obtain estimates 
of the rate of transriptome turnover for each organ, how much 
those rates correlate between the 2 organs, the degree of punc
tuated evolution or “burstiness” of turnover, and how much 
rates vary among different gene families and functional cat
egories. Our results suggest that qualitative gains and losses 
of gene expression are fairly common in these organs, and 
that the rates of turnover vary over time. We discuss the pos
sible implications of widespread activation and silencing of 
genes for organ evolution. We also discuss a number of im
portant challenges and pitfalls associated with this approach.

Results
Transcriptomes of Testes and Accessory Glands in 
11 Drosophila Species
We sequenced the transcriptomes of testes and accessory 
glands in 11 species of the Drosophila melanogaster species 
group (see Materials and Methods). We used zigzag 
(Thompson et al. 2020) to assign genes to active or inactive ex
pression states in the testes and accessory glands of each spe
cies under multiple probability thresholds. zigzag jointly 
estimates a probability of active expression for all genes thus 
producing a distribution of gene-specific marginal posterior 
probabilities of active expression. All genes with probabilities 
above an upper threshold were classified as active while those 
below a lower threshold were considered inactive. As an 
example, Fig. 1 (top) shows the estimation performed for 
D. melanogaster at P < 0.5 for the inactive and P > 0.5 for 
the active state.

Inference under the zigzag model suggests that a larger pro
portion of the genome is expressed in the testes compared to 
the AG (Fig. 2), which supports recent findings (Cridland 
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et al. 2020). The inferred proportion of expressed genes is 
44–59% in the AG and 63–74% in the testis (lowest 2.5% 
quantile to highest 97.5% quantile among species posterior 
distributions). In most cases, a higher proportion of single- 
copy genes (gene families containing a single gene in all 
species) are actively expressed, compared to the rest of the 
genome (Fig. 2). The single-copy set is likely enriched for 
housekeeping genes, which are broadly expressed and tend 
to have less copy number variation in populations than other 
genes (Dopman and Hartl 2007; Henrichsen et al. 2009).

The fraction of transcripts coming from inactive genes is 
similar in the 2 organs. Averaging over the posterior distribu
tion of zigzag’s latent mixture model implies that inactive 
genes contribute <1% of the total mRNA in each transcrip
tome. Specifically, the percentage ranged from 0.3 to 0.5% 
of the AG transcriptome and 0.2–0.3% of the testis transcrip
tome among all species. We estimated the threshold level of ex
pression at which a gene is, on average, as likely to be active as 
inactive (probability of active expression P = 0.5). Depending 
on the species, this threshold ranges from 1.0 to 2.1 TPM in 
the AG and 1.0 to 1.8 TPM in the testis. For reference, in a 

homogeneous cell mixture, if the number of mRNA tran
scripts in each cell is on the order of 105 − 106 (Islam et al. 
2014), then a gene with average expression of 1 TPM will 
have one or more transcripts in about 10–60% of cells— 
assuming binomial sampling. Our variable threshold esti
mates, which are similar to those obtained by other methods 
in other tissues and organisms (Wagner et al. 2013; Costa 
et al. 2022), confirm that no single “hard” cut-off of TPM 
or FPKM values would be equally appropriate for all species 
and tissues (Thompson et al. 2020).

Inference under the model also supports previous findings that 
the testis and AG transcriptomes are highly overlapping 
(Cridland et al. 2020). Under a more stringent threshold where 
genes with probability of expression between 0.1 and 0.9 were 
classified as unknown, we found that the AGs and testes share 
between 4,681 and 6,682 actively expressed (P > 0.9) genes, 
depending on the species. The 2 organs differ in the number 
of exclusive genes, i.e. those actively expressed in one but 
not the other organ. The AGs express between 81 and 189 ex
clusive genes per species, while the testes are more variable 
with 287 and 1,887 exclusive genes per species (Table 1). 

Fig. 1. Probabilistic estimation of discrete expression states from continuous RNA-seq data using zigzag at 2 different probability cutoffs. Top row: genes 
with posterior probabilities of active expression P < 0.5 are assigned to the inactive state (blue), while those with P > 0.5 are assigned to the active state 
(red). Bottom row: P < 0.05 are inactive and P > 0.95 are active.; genes with intermediate probabilities are not assigned to either active or inactive states. 
Similar estimation was performed for all species, separately for each tissue, under a range of probability thresholds. Gray shows the combined frequency 
of genes classified as active, inactive or neither. As the probability cut-offs become more stringent, the overlap between active and inactive distributions is 
reduced, but a larger fraction of genes remain unclassified.

Quantifying Transcriptome Turnover on Phylogenies · https://doi.org/10.1093/molbev/msaf106                                                                 3
D

ow
nloaded from

 https://academ
ic.oup.com

/m
be/article/42/5/m

saf106/8151468 by guest on 08 June 2025



This supports previous studies in D. melanogaster, D. yakuba, 
and D. simulans showing that the testes express an elevated 
number of tissue-specific genes relative to other tissues, including 
the AGs (Cridland et al. 2020; Takashima et al. 2023). These are 
likely minimum estimates due to our conservative threshold for 
active and inactive expression calls. Our zigzag analyses confirm 
that the set of genes that are active in a transcriptome vary not 
just among organs but between species (Fig. 3).

Expression of X-linked Genes in Male Reproductive 
Organs
Previous studies have found that the X chromosome is de
pleted for genes with male-biased expression (Parisi et al. 
2003; Ranz et al. 2003; Mueller et al. 2005; Sturgill et al. 
2007; Mahadevaraju et al. 2021). In the genus Drosophila, 
genes with testis-biased expression show a tendency to move 
from the X to the autosomes (Vibranovski et al. 2009), while 

accessory gland proteins (Acps) are significantly under- 
represented on the X chromosome in D. melanogaster (Ravi 
Ram and Wolfner 2007). In these studies, tissue-specific (or 
tissue-enriched) genes were identified on the basis of expres
sion bias, i.e. quantitative difference in transcript abundance 
between different organs or between males and females. 
These studies reveal how organs and sexes are represented 
on the X chromosome, but not necessarily how the X is repre
sented in the transcriptome of each organ. We found that a 
higher proportion of X-linked genes are expressed in both tes
tes and accessory glands (AGs) compared to autosomal genes 
(Fig. 4a). However, X-linked genes expressed in the testes have 
about 30% lower median expression levels than their auto
somal counterparts (Fig. 4b). These results are also consistent 
with the findings of Mahadevaraju et al. (2021; Fig. 1j). In 
contrast, we observed little difference in AG expression. 
These findings suggest that while male-specialized genes are 
under-represented on the X, a greater fraction of X-linked 
genes are active in male sex organs, albeit with lower expres
sion levels in the testes (Mahadevaraju et al. 2021; Witt 
et al. 2021; Wei et al. 2024).

Phylogenetic Model of Transcriptome Turnover
To investigate the evolutionary processes that contributed to 
the patterns we observe in our data, we fit a model of 

Fig. 2. Posterior distributions of the weight active parameter in the zigzag model (ω), which measures the proportion of all protein-coding genes that are 
actively expressed in the AG (blue) and testes (red) of each species; species phylogeny is shown on the left. Vertical lines indicate the expected proportion 
of single-copy genes (out of n = 8,660) that are active in each organ, calculated from the posterior probabilities of active expression of each gene in each 
species. If the expression states of genes were, on average, the same for single-copy and non-single-copy genes, the peaks of the weight active posterior 
distributions would coincide with the vertical lines. In most cases, however, a higher proportion of single-copy genes is estimated to be active, compared 
to the total protein-coding genome.

Table 1. The transcriptomes of testes and accessory glands

AG Testis

% active protein-coding genes 44–59% 63–74%
% transcripts from inactive genes 0.3–0.5% 0.2–0.3%
TPM of genes with P = 0.5 active 1.0–2.1 TPM 1.0–1.8 TPM
Number of exclusive expressed genes 81–189 287–1,887
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transcriptome evolution in the 2 organs to a time-calibrated 
phylogenetic tree and the expression states for single-copy 
genes in both organs (see Methods). In brief, we assumed 
that each gene’s expression state evolved as a two-state 

(active/inactive) continuous-time Markov chain (CTMC) 
with turnover rate (rate of activation/deactivation of expres
sion) varying across branches according to an uncorrelated re
laxed clock model where each branch of the tree was assumed 

Fig. 3. Comparative expression levels and expression state estimates for 6 genes in accessory glands that show one or more evolutionary changes in 
expression state among the 11 species. Dot plots show the estimated TPM values for each of the 4–5 biological replicate RNA-seq libraries in each 
species, with the range of TPM values indicated under the dot plots. TPM = 1 is indicated by a vertical dashed line. Hot and cold color gradient and 
numbers to the right of the dots show posterior probability of active expression under the zigzag model.
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to have a unique mean turnover rate that correlated between 
the 2 organs. We also included among-gene rate variation in 
our model to account for differences in turnover rate among 
genes.

Ideally, we would average over the uncertainty of the ex
pression states of all genes while fitting evolutionary models 
to the zigzag posterior probabilities. Unfortunately, such 
phylogenetic analysis methods are not currently available for 
transcriptome-scale comparative data, which involve thou
sands of characters. We therefore set 2 probability thresholds 
derived from a single value we call α to classify genes as active 
(high probability of active expression; >1 − α), inactive (low 
probability of active expression; <α), or unknown/missing 
data (intermediate probability of active expression; between 
α and 1 − α). Because, to our knowledge, this type of study 
has not been performed before, it was important to investigate 
the consistency, adequacy, and robustness of not just the 
zigzag predictions of expression state, but also of the evolu
tionary model fit to those inferred expression states. The prob
ability cutoffs for active and inactive genes in particular can 
potentially have a large impact on inferences. If these cutoffs 
are too conservative, too much data will be thrown out and 
the prior will have a strong impact on our inferences. As the 
cutoffs approach 0.5, more of the data is used for inference 
but the number of misclassifications increases, which could 
overpower the true signal in the data.

To assess the overall adequacy of our evolutionary model 
and to select appropriate probability cutoffs for gene expres
sion states, we conducted a series of cross-validation experi
ments and sensitivity tests (see Methods and supplemental 
text S1, Supplementary Material online). The results of this 
cross-validation experiment revealed that the probability 
thresholds of α = 0.05, 0.1, and 0.25 work well for our data 
such that phylogenetic inferences of the expression states of 
the hold-out data agreed with the zigzag estimates with prob
ability near 0.88 on average (see supplemental text S1, figs. 
S5–7, Supplementary Material online). Accuracy was similar 
for each species (supplementary fig. S6, Supplementary 

Material online). We performed phylogenetic analyses under 
all cutoffs, and mostly report the estimates based on an α = 
0.1 as our most confident estimates since that level had the 
highest average accuracy.

History and Dynamics of Transcriptome Turnover
Inferences under our model suggest distinct modes of evolu
tion for the 2 organ’s transcriptomes. Our model allowed us 
to directly infer the correlation of branch-specific rates of tran
scriptome turnover in the 2 organs. Despite there being a great 
deal of uncertainty about the strength of this correlation (95% 
highest posterior density interval (HPD) for the correlation 
parameter is [−0.05, 0.76]), the correlation is likely no >0.76.

We estimated the rates at which genes were turned on and 
off in the AG and testis and explored how those rates varied 
among genes and organs as well as among the different 
branches of the species phylogeny. Assuming that the root 
age of the species tree is approximately 25 million years 
(Obbard et al. 2012), our posterior estimates of branch rates 
suggest that the accessory glands experienced a pulse of rapid 
transcriptome turnover around 10 million years ago, near the 
base of the Oriental lineage of the melanogaster species group 
(Fig. 5). In contrast, we infer much more subdued rates of 
turnover in the testis on those branches. Also, in contrast to 
the AG, we infer accelerated transcriptome turnover in the tes
tis on the D. melanogaster tip branch, compared to the rest of 
the tree (Fig. 5, branch 18). For probability cutoffs (α) of 0.05, 
0.1, and 0.25, the relative rates of turnover were fairly robust 
to the choice of probability cutoff, with branches 15 and 16 
near the base of the Oriental lineage consistently showing 
the highest rates of turnover for accessory glands, while 
some terminal branches consistently show elevated turnover 
in testes, in particular in D. melanogaster (supplemental text 
S1 figs. S1–S4, Supplementary Material online).

At the cutoff of α = 0.1, we estimate that the mean gene ex
pression turnover rate is 1.6 × 10−3 per million years in the AG 
and 2.0 × 10−3 per million years in the testis (Table 2; 

(a) (b)

Fig. 4. Comparison of gene expression between the X chromosome and autosomes. a) Each colored dot shows the expected proportion of actively 
expressed genes (averaged over the posterior probability of expression) in a given species and organ (testis shown in red; AG shown in blue.). Lines 
connect the autosomal (“A”) and X-linked categories within each species. b) Lines connect the median expression levels of actively expressed genes for 
autosomal and X-linked genes within each species. Genes are considered “active” if their probability of expression is >0.5.
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supplementary Data file S2, Supplementary Material online). 
Overall, the per-gene turnover rate appears to be on the order 
of 10−3 per MY (Table 2). For reference, this is on the same 
order of magnitude as the per nucleotide rate of substitutions 

in Drosophila, where estimates are around 8 × 10−3 per MY 
(Obbard et al. 2012). Thus, for a gene of size 1 kb, we expect 
it to change expression state on the order of once every 1,000 
base changes. For a genome of around 15,000 genes, these 

Fig. 5. Posterior mean estimates of branch-specific relative turnover rates for single-copy genes in the AG (top phylogeny) and testis (bottom phylogeny). 
Branch color reflects the mean posterior estimates of the transcriptome turnover rate (changes per single-copy gene per MY), from low (blue) to high (red). 
The bottom violin plot shows the full posterior samples of the relative turnover rate for AG (blue) and testis (red) for each branch numbered on the 
phylogenetic trees. Note the accelerated turnover on branch 11 in the testis and branches 15–18 in the AG. The Oriental lineage is descended from branch 
18.
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turnover rates imply that roughly 40 expression activation/de
activation events happen in each organ per million years. 
However, this does not imply a massive rewiring of the tran
scriptome. Most expression turnover is likely driven by fre
quent changes in the expression state of a relatively small 
subset of genes (Fig. 6).

To estimate the variation among genes in contributing to 
transcriptome turnover, we analyzed the posterior distribu
tion of the parameters of the among-site rate variation model. 
This model draws gene evolution rates from a discretized gam
ma distribution (see Methods). In the accessory glands, we es
timate that half of all transcriptome turnover of single-copy 
genes is being driven by about 10% of the genes, while about 
15% of genes are driving half of all changes in the testis. 
Because these estimates come from single-copy genes, which 
appear to be more likely to be expressed in the AG and testis 
compared to the rest of the genome (Fig. 2), these rates of turn
over probably differ from the genome average and, we suspect, 
underestimate the average rate for all genes. On the other 
hand, transcriptome turnover may be slower in other tissues 
compared to the rapidly evolving male reproductive system. 
In summary, our analyses imply that the rate of transcriptome 
turnover changes over time independently in the 2 organs and 
is highly variable among genes.

We investigated 2 plausible artifacts that could cause the in
ferred patterns of branch rate variation in these 2 organs. One 
potential artifact could be caused by a subset of genes exhibit
ing a very high rate of turnover, such that phylogenetic infor
mation is quickly erased to different degrees in different parts 
of the tree, e.g. longer branches vs. shorter branches near the 
tips. A second artifact could be caused by our method of clas
sifying genes as ON or OFF. Our inferences could be highly 
sensitive to misclassification, which could lead to higher esti
mates of turnover rates near the tips of the tree. To explore 
these potential sources of error, we simulated 2 datasets under 
these scenarios using sim.char in the R package geiger v 2.0.11 
(Pennell et al. 2014), with the same number of genes and spe
cies and the same tree as the Drosophila dataset. In both sim
ulations, activation rate equaled deactivation rate and branch 
rates were held constant in order to test whether these poten
tial problems could lead our method to infer significant branch 
rate variation where none exists. In the first simulation, all 
genes evolved at the same rate, except 5% of genes evolved 
100-fold faster. In the second simulation, there was no vari
ation in rates among genes, but 1% of the genes in each species 
and organ had their expression state flipped to simulate mis
classification. Figure 7 shows that the branch rates at shorter 
terminal branches in our model are sensitive to both scenarios. 
Thus, the elevated rates observed on branches 1, 2, 9, 10, and 
11 may be caused in part by state misclassification, a very high 
turnover rate in a subset of genes, or both.

Turnover Rate and Biological Function
We tested whether the genes that show elevated turnover rates 
in male reproductive organs are enriched for particular bio
logical functions. To do this, we performed gene ontology 
(GO) analysis on the sets of genes that showed turnover rates 
at least two-fold higher than the mean. This analysis was done 
separately for AGs and testes, using all singleton genes ex
pressed in the corresponding tissue as the background. Eight 
GO terms in the testis, and 20 in the AG, showed significant 
enrichment (Fig. 8a, b; and supplementary fig. S7 in 
supplemental text S1, Supplementary Material online). 
There was strong overlap in the significant terms between 
the 2 tissues, such that all gene categories that were enriched 
in the testis were also enriched in the AG. However, there 
was only a limited overlap between the individual genes driv
ing the enrichment (Fig. 8c). The enriched GO terms were re
lated to sensory perception (including olfactory and gustatory 
receptor genes and odorant-binding proteins), GPCR signal
ing (especially neuropeptide signaling), and cuticle develop
ment. The AG additionally showed enrichment for terms 
related to cilium organization, membrane ion transport and 
membrane projection.

The pattern of unusually fast turnover could potentially be 
explained by contamination of some samples with RNA from 
non-target tissues. For example, the presence of genes related 
to cilium organization in AG samples could reflect contamin
ation from sperm, transcripts related to cuticle development 
could be coming from epithelial tissues, and genes related to 
GPCR signaling and sensory perception may reflect contamin
ation from neurons that innervate the reproductive organs. 
However, several lines of evidence argue against contamin
ation being a major factor. First, other genes that are highly 
expressed in the potential sources of contamination (such as 
ion channels and sperm-specific genes) do not show up in 
the enrichment analysis. Second, the inferred gains of 

Fig. 6. Transcriptome turnover is concentrated among a minority of 
genes. Proportion of single-copy genes (n = 8,660) are ranked on the X 
axis by their rate of change, from fastest to slowest evolving. The red 
(testis) and blue (AG) curves show the cumulative proportion of 
transcriptome turnover events explained by each subset of genes. For 
example, 20% of genes account for nearly 80% of all turnover in the AG. 
The black line shows the expected curve if all genes turned over at the 
same rate.

Table 2. Mean turnover rates per gene for AG and testis at different 
probability cutoffs (α)

Probability cutoff 
(α/1 − α)

AG mean turnover rate 
per gene (my−1)

Testis mean turnover 
rate per gene (my−1)

0.5 5.8 × 10−3 3.8 × 10−3

0.25/0.75 3.1 × 10−3 2.9 × 10−3

0.1/0.9 1.6 × 10−3 2.0 × 10−3

0.05/0.95 1.0 × 10−3 1.5 × 10−3

0.01/0.99 0.4 × 10−3 0.7 × 10−3
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expression are generally consistent across replicates of the 
same species (Fig. 8d). Third, these gains are often associated 
with high TPM counts (Fig. 8d). Fourth and most important, 
different genes in the same GO category show expression gains 
in different species (Fig. 8d), whereas contamination would 
produce a highly correlated gain. For these reasons, contamin
ation is unlikely to be a major contributor to the rapid tran
scriptome turnover we observe.

We do not know what roles, if any, the genes undergoing 
rapid turnover play in male reproductive organs, but 
some enriched terms are consistent with their physiology. 
Neuropeptides are known to regulate copulation, for ex
ample, by coupling mating duration to the transfer of sperm 
and seminal fluid (Taylor et al. 2012). Similarly, the ability 
of males to upregulate sperm production in response to the 
presence of females depends on the ability of somatic cyst 
stem cells of the testis to respond to neuronally secreted oc
topamine (Martin-Diaz and Herrera 2024). It is conceivable, 
therefore, that co-option of genes involved in neuropeptide 
signaling could lead to lineage-specific changes in inter-organ 
communication or the regulation of secretory cell activity— 
changes that may, for example, have implications for the 
males’ ability to dynamically respond to the sociosexual envir
onment (e.g. Hopkins et al. 2019).

Turnover of Transcription Factors
Differences in the rate of expression evolution among classes 
of genes can suggest possible mechanisms for phenotypic evo
lution. In particular, gain or loss of a transcription factor ex
pression can have large downstream consequences on the 

transcriptome and thus on the function of an organ. If a tran
scription factor is lost or gained by a transcriptome it may 
bring with it downstream targets, resulting in a pulse of 
transcriptome turnover in a lineage on the phylogeny. We 
examined the mean difference in the turnover rate between 
transcription factor genes and the rest of the single-copy 
gene families in our phylogenetic study. To accomplish this 
we analyzed the posterior distribution of gene-specific rates 
from the among-gene rate variation model (see Methods). 
Our data and models imply that transcription factors change 
expression states at different rates in the accessory glands 
and testes, where they evolve at a relatively slow rate in the 
former and a relatively fast rate in the latter. We report 
the posterior credible intervals of the percent difference of 
the mean rate (PDMR) between each group of genes (i.e. 
TF and non-TF). PDMR is calculated with the following for
mula:

PDMR =
mean TF rate − mean non-TF rate

mean non-TF rate

􏼒 􏼓

× 100 (1) 

Our models and the RNA-seq data imply that expression states 
of single-copy transcription factors in AGs turn over on average 
10–34% slower than those of non-TF single-copy genes. 
Conversely, TF expression states in testes turn over 0–17% fast
er compared to non-TF genes (colored lines and circles in each 
density in Fig. 9;a–b, blue and red curves). To check how fre
quently random subsets of genes deviate from the genome aver
age at least this strongly, we measured the mean PDMR 
(M-PDMR) for each comparison and created an empirical null 
distribution from random partitions of the data where we sum
marized each random partition with the same statistic, the 

Fig. 7. Posterior distributions of branch rates for data simulated under 2 scenarios where the true branch rates are constant. See Fig. 5 for branch 
numbers. Top panel shows inferred branch rates when 5% of genes change expression states 100 times more rapidly than other genes. Bottom panel 
shows the inferred branch rates when 1% of genes have their expression states misclassified. Note that branches 10 and 11 are the shortest terminal 
branches in the tree.
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M-PDMR (Fig. 9;a–b, black curves). Results show that for TF 
genes, this statistic is extreme relative to the reference set in 
both AGs and testis, with < 0.1% of genes in the reference set 
having more extreme statistics for both organs. Thus, at the level 
of discrete ON/OFF transitions, our analysis implies that TF 
genes evolve slightly faster than non-TF genes in the testis, but 
significantly slower than non-TF genes in the AG.

Turnover of X-linked Genes
X-linked genes may evolve differently from autosomal genes 
due to the differences in selective pressures and effective 

population size that the X chromosome experiences in males 
vs females (Parisi et al. 2003; Ravi Ram and Wolfner 2007; 
Singh and Petrov 2007; Sturgill et al. 2007; Vibranovski 
et al. 2009; Khodursky et al. 2020). We tested whether tran
scriptome turnover rate differs between X-linked and auto
somal genes using the same approach as described above for 
transcription factors. We found that both classes of genes 
turn over at similar rates. The posterior distribution of 
PDMR overlaps zero and places little probability on differen
ces greater than about 10% in either organ (Fig. 9; c–d, blue 
and red curves). For X-linked genes, the reference distribution 
of mean PDMR suggests little surprise at seeing this pattern 

(a) (b) (c)

(d)

Fig. 8. Genes with elevated turnover rates are enriched for similar functional categories in testes and AGs. a) A dot plot from a gene ontology (GO) analysis 
showing all significantly enriched (q-value <0.05) biological process terms among the genes showing rapid turnover in the testis. Genes are designated as 
showing rapid turnover if they have rates at least two-fold higher than the mean. The list of all singleton genes expressed in the testis is used as the 
background. b) The top 8 significantly enriched terms in the AG; analysis performed the same way as in (a). The full list of significantly enriched AG terms 
can be found in supplementary fig. S8 of supplemental text S1, Supplementary Material online. c) Venn diagrams illustrating the overlap between the 
genes showing rapid turnover in the testis and AG, in each of the shared enriched GO terms. Note that most individual genes are exclusive to one organ. 
d) Dot plots showing the TPM values for selected genes showing high turnover rates, mapped onto the species phylogeny. Two genes per functional 
class (neuropeptide receptors, sensory perception, and cilium organization) are shown. For each pair, both genes are shown in the same organ. Dots are 
colored in accordance with the posterior probability of active expression inferred from the zigzag model. Separate dots within a species represent different 
biological replicates.
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(Fig. 9; c–d, black curves) when comparing gene partitions 
that are random with respect to X-linkage. In summary, the 
2 male reproductive organs show little evidence of either slow
er or faster evolutionary turnover in the expression of 
X-chromosomal genes compared to other single-copy gene 
families.

Ancestral Transcriptomes of Testes and Accessory 
Glands
We used our phylogenetic model to estimate the posterior 
probability that each single-copy gene was expressed in the 
testes and AGs of the most recent common ancestor of the 
11 species in our analysis (i.e. the most recent common ances
tor of the melanogaster species group). Our model and data 
imply, at a probability cutoff of 0.95, that 61% of the single- 
copy genes were expressed in the ancestral accessory gland, 
and 74% were expressed in the ancestral testis. We also esti
mated the posterior probability that each gene is actively ex
pressed in D. melanogaster but was not expressed in the 
most recent common ancestor (i.e. that it gained expression 
in the testis or AG in the D. melanogaster lineage over the 
last ∼25 MY) by analyzing the joint posterior distribution 
of the expression state at the root node of the tree and at 
the D. melanogaster tip (supplementary Data file S3, 
Supplementary Material online). This analysis implies that at 
a probability >0.95, D. melanogaster expresses 19 single-copy 
genes in the AG that were not expressed in that organ in 
the most recent common ancestor of the melanogaster 
species group, while 95 such genes are expressed in the 
D. melanogaster testis.

These results raise several questions, in particular—how big 
are the changes in transcript abundance associated with the 
gain of active expression? Do recently activated genes remain 
expressed at levels barely above our probability cut-offs, or 
does their expression approach the levels typical of other genes 
expressed in that tissue? To address this question, we compared 
the expression levels of newly active and ancestrally active genes 
in each species in both organs (Fig. 10a,b). Newly active genes 

were defined as those that have >0.95 probability of being ON 
in the focal species and >0.95 probability of being OFF in the 
most recent common ancestor of the 11 species in our study. 
Conserved, ancestrally active genes are defined as those with 
>0.95 probability of being ON both in the focal species and 
in the common ancestor. We estimated the posterior distribu
tion of the difference in mean log TPM between these 2 groups 
using the R package BEST v 0.5.4 (Kruschke 2013) setting de
fault vague priors (Fig. 10c). Resulting inferences imply that the 
2 organs differ in the expression levels of newly active genes. In 
testes, such genes have lower expression compared to ancestral
ly active genes, while in the AG both classes of genes are ex
pressed at roughly similar levels (Fig. 10). Thus, in at least 
some tissues newly activated genes approach typical expression 
levels. In fact, some recently activated genes are expressed at 
high TPM (Fig. 3,Fig. 8d).

Discussion
In this report, we explored the feasibility of using discretized 
RNA-seq data to study the evolutionary turnover of transcrip
tomes—that is, the gain and loss of tissue-specific expression 
by conserved genes. We created an analysis pipeline that fits 
discrete trait evolution models to comparative RNA-seq data
sets. This pipeline translates continuous RNA-seq data to dis
crete trait data using a Bayesian method for expression state 
inference (zigzag; Thompson et al. 2020). To investigate the 
co-evolution of transcriptomes across multiple organs, we de
fined a phylogenetic model of correlated gene expression evo
lution in 2 or more organs. We demonstrated the power of this 
research pipeline by examining 2 rapidly evolving organs in 
the Drosophila male reproductive system, namely the acces
sory glands and the testes.

We first characterized attributes of the 2 organ transcrip
tomes in each species individually. We estimated that testes ex
press a greater proportion of the genome compared to 
accessory glands, with a proportion of actively expressed 
genes falling in the 63–74% range in the testis and 44–59% 
in the AG across the 11 species. The level of background 

(b)(a)

(d)(c)

Fig. 9. The posterior distributions of the percent difference of mean rate (PDMR; equation 1) for transcription factors and non-transcription factors (top 
row; A and B) and between X-linked and autosomal genes (bottom row; C and D) in AG (blue) and testis (red). a) The blue distribution gives the percent 
difference of the mean rate of TF genes and non-TF genes computed from the posterior sample from the phylogenetic MCMC. As a null reference, the 
black distribution of mean PDMR (M-PDMR) of 1,000 random partitions of all genes into 2 groups equivalent in size to the TF/non-TF partition. The blue 
point with a line indicates the mean of the distribution. b) shows the same analysis in the testis. c) shows the same analysis but for X-linked/autosomal 
PDMR. d) is like C except in the testis.
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(a)

(c)

(b)

Fig. 10. Expression of recently activated genes compared to genes with conserved expression. a,b) “Recently activated” is defined as having >0.95 
probability of being OFF in the common ancestor and ON in species X (A; blue boxes for AG, B; red for testes). “conserved expression” is defined as 
having >0.95 probability of being ON in the common ancestor and ON in species X (gray boxes). c) The posterior distribution (proportional to violin width) of 
the difference in log TPM between the 2 groups (μ1 is the mean of the recently activated group and μ2 is the mean of the conserved expression group).
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expression noise (i.e. the fraction of the transcriptome that 
does not correspond to actively expressed genes) is similar be
tween the 2 organs and is below 1% in all species. In other 
words, >99% of protein-coding transcripts in cells appear to 
be from actively expressed genes.

With our model of correlated transcriptome evolution, we 
inferred turnover rates and historical expression states of 
8,660 single-copy genes. This inference suggests that the tran
scriptomes of the two male reproductive organs evolve at simi
lar overall rates but follow distinct evolutionary paths. The 
accessory glands and testes show bursts of rapid transcriptome 
turnover at different times and in different parts of the tree. 
Among genes, there is greater variation in turnover rates in 
the AG than in the testis, indicating a lower baseline rate of 
turnover in the AG with a subset of genes showing higher rates 
of evolution. We inferred a relatively low correlation in branch 
rate between the organs, though the inferences were highly un
certain. Another type of correlation we did not explore but is 
worth mentioning is the gene-level correlation between the or
gans. In our model we sought to capture a dynamic where an 
acceleration in evolution of one organ may correlate with the 
rate of evolution of another organ regardless of which genes 
are experiencing accelerated evolution. We hope in the future 
this model is expanded to include dynamics where genes can 
change state in multiple organs simultaneously.

We also demonstrated that we can estimate ancestral tran
scriptomes with this phylogenetic model. Ancestral state re
construction methods can be used to estimate tip states for 
missing data as well. We performed a leave-k-out experiment 
to obtain estimates of the state of genes at the tips which were 
“held out” by setting them as missing data. We used these es
timates to check the consistency between our evolutionary in
ferences and the state predictions from zigzag. This 
experiment indicates a solid degree of consistency with an 
average accuracy of 88%. In like fashion, genes that are truly 
missing from a dataset either because of missing measure
ments or because zigzag couldn’t identify their states with suf
ficient certainty can leverage the information in other species 
through phylogenetic relationships to gain more certainty.

We explored the evolutionary patterns of 2 important 
classes of genes, transcription factors and X-linked genes, to 
test whether they follow distinct evolutionary dynamics com
pared to the rest of the genome. Transcription factor expres
sion appears to evolve faster than the non-TF single-copy 
genes in the testis, but much slower in the AG. It is interesting 
to note that our estimates of the overall transcriptome turn
over rates are similar for the 2 organs. Given that changes in 
TF expression are expected to have a large impact on the tran
scriptome, this is a curious result. One possibility is that the 
gain and loss of TF expression may modulate the expression 
levels of genes that are already expressed in the organ, rather 
than changing the expression states of genes from off to on or 
vice versa. Alternatively, downstream expression changes that 
result from TF turnover could be more pronounced in 
non-single-copy gene families that undergo duplication and 
deletion more frequently. Finally, we note that the posterior 
distributions of the mean AG and testis turnover rate are 
both fairly wide, and thus moderate to large differences in 
rates are plausible. Analysis among more species could help 
provide more precise estimates.

Our estimates of evolutionary rates indicate that the “fast-X 
effect” on expression levels (Meisel et al. 2012b) doesn’t ne
cessarily imply a faster rate of transitioning between ON 

and OFF among conserved single-copy genes. We find that 
X-linked genes turn over at rates not significantly different 
from autosomal genes. However, we emphasize that our data
set consists of conserved single-copy gene families among elev
en Drosophila species. The fast-X effect may be in part driven 
by gene families that are more evolutionarily labile. Gene du
plication and deletion in some gene families is known to play 
an important role in expression evolution (Lynch and Conery 
2000; Lynch and Force 2000; Thompson et al. 2016, 2018; 
Ebadi et al. 2023).

zigzag allowed us to gain some insight into the representa
tion of the X and autosomal chromosomes in male organs. 
We found that a higher percentage of X-linked genes is ex
pressed in both organs compared to autosomal genes. How 
does this result fit with the large body of research on the re
verse relationship, that is, how male organ genes are distrib
uted among the chromosomes? Several studies report that 
genes with testis-biased and AG-biased expression tend to be 
under-represented on the X chromosome in D. melanogaster 
and other Drosophila species, suggesting that X-linked genes 
with male-specific functions may be disfavored by selection 
(Parisi et al. 2004; Vibranovski et al. 2009; Mikhaylova and 
Nurminsky 2011; Assis et al. 2012; Meisel et al. 2012a; 
Mahadevaraju et al. 2021). This paucity of male-biased genes 
on the X chromosome does not necessarily imply that the X 
chromosome is under-represented in any given tissue relative 
to autosomal genes. These studies also focus on quantitative 
expression levels rather than expression states and thus cannot 
estimate the proportion of classes of genes (e.g. X-linked 
genes) that comprise transcriptomes.

Additionally, we estimate that actively expressed X-linked 
genes are expressed at around 30% lower levels than auto
somal genes in the testis while the 2 types have similar expres
sion levels in the AG. This whole-organ pattern is expected if 
dosage compensation is decreased or the X is silenced in the 
male germline (Vibranovski et al. 2009; Meiklejohn et al. 
2011; Mahadevaraju et al. 2021; Witt et al. 2021; Wei et al. 
2024).

Challenges and Pitfalls
Different dimensions of the dataset are informative about dif
ferent model parameters. An obvious question is how this type 
of analysis is influenced by the number of species, genes and 
biological replicates per species. The first step in our analysis 
pipeline estimates the expression state of genes from replicated 
continuous (TPM) data. Four samples per species appear to be 
sufficient for zigzag, as we find that increasing the number of 
samples further provides only marginally more precise esti
mates (Thompson et al. 2020). As for the number of taxa, 
we found that with just 11 species, two organs, and 8,660 
genes, we were able to detect differences in the mode and tem
po of transcriptome turnover both between tree branches and 
between organs. However, many model parameters of inter
est, such as the correlation of turnover rates between the 2 or
gans, have posterior distributions that are quite wide. This is 
also true for the turnover rates of individual genes parameter
ized in the among-site rate variation model. Datasets contain
ing more species should better resolve these parameters and 
shed light on the answers to many other important questions 
relating to transcriptome evolution while allowing for 
richer and biologically realistic models of regulatory evolu
tion. In summary, gene-level parameter estimates should bene
fit primarily from more species, while transcriptome-level 
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parameters should benefit from more species as well as from 
including more genes in the analysis.

The first point of failure in any comparative transcriptome 
study is dissection of biological samples. Because “compara
tive” assumes homology, it is crucial that RNA samples are 
isolated from truly homologous tissues. This is not a trivial 
problem if the organ system under study changes structure fre
quently and/or is not defined in a consistent way among spe
cies. It is easy to imagine scenarios where it is difficult to 
distinguish the evolutionary co-option of new genes in a tran
scriptome from differential contamination by other tissues 
and cells in a subset of species. We took many precautions 
with the accessory glands and testis at several steps in our ana
lysis pipeline to detect and mitigate potential artifacts emanat
ing from dissection error. Our analysis of individual gene 
expression patterns suggests that cross-tissue contamination 
is not a major source of artifacts in this study. Nevertheless, 
it is important to consider this potential source of erroneous 
inference in all comparative transcriptome analyses, whether 
qualitative or quantitative.

The next set of challenges emerge from how expression is 
defined and quantified. Similar to comparative analyses that 
treat gene expression as a continuous character, evolutionary 
inference of discrete expression states is fraught with potential 
artifacts emanating from the data processing pipeline 
(Khaitovich et al. 2005; Harrison et al. 2012; Romero et al. 
2012; Rohlfs et al. 2014; Dimayacyac et al. 2023; Pal et al. 
2023). The most obvious factors to influence results would 
be genome assembly and annotation quality. If some species 
have few reads mapping to an ortholog because the gene 
was not correctly assembled or given an incorrect annotation, 
that could obviously influence the inferred expression state 
and comparative patterns for that gene.

Tip state uncertainty poses another set of challenges that re
quire validation and innovation. The posterior probability of 
active expression is continuous, which requires discretization 
for trait models that do not account for tip state uncertainty. 
This necessitated using a probability threshold, α. We con
ducted a leave-k-out validation experiment to evaluate sensi
tivity to probability thresholds and selected a conservative 
threshold for downstream analysis. A more robust method 
would average over tip state uncertainty during inference 
(Liebeskind et al. 2019; Beaulieu and O’Meara 2024). 
Although most genes in our dataset had highly certain states, 
this may not hold true for many datasets.

An essential assumption for conducting a macroevolution
ary analysis is that expression states of genes do not vary 
among populations in each species, which may not be the 
case for some genes (Cridland et al. 2020). Our approach to 
this problem was to sample 2 distinct populations in each spe
cies and then run a leave-one-library-out zigzag analysis to see 
which genes are sensitive to the exclusion of individual librar
ies (see Methods).

Our use of a new method for classifying gene expression 
states, zigzag, requires careful model checking, sensitivity 
tests, and validation; indeed, posterior predictive checks and 
cross-validations are essential for any study seeking to com
bine numerous complex models in an inference pipeline. Our 
sensitivity and posterior predictive checks and cross- 
validation experiments suggest some robustness. However, it 
can be difficult to know how robust the inferences are because 
when it comes to expression states of genes, ground truths are 
themselves inferences under models. The fact that we observe 

an 88% probability of agreement between evolutionary pre
dictions of the expression states of hold-out genes and the 
zigzag predictions of their expression states (supplemental 
text S1, Supplementary Material online) appears to be a 
good indication that our analysis is providing a fair approxi
mation of the expression states and evolutionary processes be
hind the comparative expression patterns in our data. 
However, interpreting this result requires care, and we encour
age others to critically explore potential weaknesses that may 
exist in this approach.

As in any comparative study, our results depend on the ac
curacy with which species relationships are inferred. We treat 
the species tree and root age as known, when in fact these are 
estimates and thus have some unmodeled level of uncertainty 
around them. We have high confidence in the tree topology, 
since it is similar to the phylogeny based on hundreds of loci 
distributed across the entire genome (Suvorov et al. 2021). 
On the other hand, the estimates of node ages in Drosophila 
are notoriously uncertain due to the dearth of fossil calibration 
points (Suvorov et al. 2021). Including this uncertainty may 
decrease the precision of posterior estimates of branch rates.

Another critical assumption in our methods (as in other ana
lyses of gene expression evolution) is that each gene is evolving 
independently. This is a convenient simplifying assumption of 
the phylogenetic inference model. However, it is unknown 
how much bias emanates from this simplification for tran
scriptome evolution, where this is obviously not true given 
the regulatory interactions among genes. If the expression 
state of the average gene is governed by a complex interaction 
of numerous genes, then this assumption of independence may 
be a reasonable approximation. However, if many genes are 
highly sensitive to the state of a small number of genes, this as
sumption may result in misleading inferences.

Future Directions
The first step toward identifying causal mechanisms is to find 
patterns of correlation. While quantitative changes in gene ex
pression are both highly prevalent and affect adaptive pheno
types, qualitative gain or loss of gene expression can, like gene 
deletion and duplication, have especially profound conse
quences for organ structure and function (Gompel et al. 
2005; Rebeiz et al. 2009; Chan et al. 2010; Fraser et al. 
2010; Arnoult et al. 2013; Loehlin et al. 2019; Kowalczyk 
et al. 2022; Marand et al. 2023). Potential cases of association 
between genetic and phenotypic change can be identified by 
phylogenetic analysis: if a gene was activated or inactivated 
on the branch where a new phenotype evolved, that gene 
may be part of a tissue-specific regulatory pathway mediating 
the evolutionary change. In this study, we took a step toward a 
systematic comparative analysis of gene expression states by 
developing a method for quantifying the rate of transcriptome 
turnover on phylogenies. In the future, we can build upon this 
foundation to map the transitions between active and inactive 
gene expression states to specific branches of species trees. 
This approach is likely to provide new insights into the regu
latory mechanisms driving phenotypic evolution.

This study focuses only on single-copy gene families, which 
comprise slightly over half of the genome and may not be rep
resentative of the transcriptome as a whole. Gene families with 
unstable sizes (those undergoing frequent gene duplications 
and losses) may also be subject to faster regulatory turnover 
(Lynch and Conery 2000; Lynch and Force 2000; Makino 
and McLysaght 2010; Thompson et al. 2016; Ebadi et al. 
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2023). This is perhaps one of the greatest weaknesses of evo
lutionary studies that require filtering the dataset to single- 
copy gene families. As more species are added, the dataset 
becomes more enriched for evolutionarily stable gene families. 
This means as the power of our inferences increase, the gener
ality of those inferences likely decreases. To fully understand 
how organ function evolves, it is essential to characterize the 
role of structural changes to the genome in transcriptome turn
over. This means we should develop models that integrate evo
lutionary processes that add and remove genes from the 
genome with regulatory processes that turn genes on and 
off. Though challenging, solving this problem will uncover 
complex relationships, such as those between gene duplication 
and expression changes or regulatory inactivation and gene 
loss. As genome annotations improve, expression estimation 
becomes more precise, and new evolutionary models are de
veloped, we anticipate many novel and intriguing questions 
will arise from expression state evolution research.

Methods
RNA Sequencing and Expression Estimation
D. melanogaster testis expression estimates were obtained 
from Thompson et al. (2020). All other RNA-seq libraries 
from testes and accessory glands were created and analyzed 
using the same methods as in Thompson et al. (2020). In brief, 
mRNA from each organ was extracted from approximately 25 
mixed-stage adult male flies. At least 2 biological replicates 
each from the genome reference strain (used for genome as
sembly and annotation) and from a second, non-reference 
strain were obtained. Sequencing was performed on either a 
HiSeq2500, 3,000, or 4,000 (see the supplemental methods 
S2.3.2, Supplementary Material online of Thompson et al. 
2020). We mapped paired-end reads to published genome an
notations (see Table 3) using STAR v. 2.5.3 (Dobin et al. 
2013). We assembled reference-only transcripts using 
Stringtie v. 2.1.4 (Pertea et al. 2015) and estimated transcript 
abundance in transcripts per million (TPM). Suppl. table S1, 
Supplementary Material online provides more details about 
samples.

Expression State Inference
We used the R package zigzag (Thompson et al. 2020) v.1.0.0 
to infer gene expression states from TPM values from multiple 
biological replicates (libraries) of each tissue and species. 
zigzag assumes that inactive and active genes are drawn 
from distinct distributions in a mixture model, which are ap
proximately normal and overlap to varying degrees depending 
on the tissue and species. The model also assumes that individ
ual libraries (biological replicates) are noisy samples from the 
combined inactive and active distributions of the mixture 
model. Importantly, zigzag assumes that the latent true ex
pression state of each gene is shared among all biological rep
licates. Increasing numbers of libraries therefore increases the 
certainty about the expression states of genes. Table 4 shows 
the prior settings assumed for the accessory glands and the 
testis.

We updated zigzag (v1.0.0) so that all mixture components 
could share a single variance parameter. This significantly im
proves MCMC convergence and efficiency with apparently lit
tle impact on inference for our samples. Additionally, the 
previous default model (v0.1.0) allowing the variances to 
vary between inactive and active components puts positive 

prior probability on unrealistic models where, for example, 
if the variance of the inactive component is much higher 
than the active component(s), genes with very high expression 
could be assigned to the inactive component. Two independ
ent MCMC chains were run for 25,000 cycles, sampled every 
5 cycles, and compared for convergence by measuring PSRF 
(Brooks and Gelman 1998). A PSRF close to 1 and < 1.2 is 
considered a good convergence. All parameters for both or
gans had PSRF <1.2.

Proportion of transcripts from Inactive Genes. The propor
tion of protein-coding gene transcripts emanating from in
active genes is computed from the posterior distribution of 
the latent mixture model implemented in zigzag. The model 

Table 4. Summary of zigzag prior distributions

Parameter Distribution 
Type

Distribution 
Parameters

Description

s0 Normal μ = −1, σ = 2 Baseline variance 
in expression

−s1 Exponential λ = 2 Influence of 
expression level 

on variance
τ Exponential λ = 1 Variation in 

gene-specific 
variance

αr Exponential λ = 1/10 Proportional to 
library dropout 

rate
ωa Beta α = 2, β = 2 Proportion active
ωk

a Beta α = 1, β = 1 Proportional 
within active 

subcomponent k
ρ Beta α = 1, β = 1 Spike 

probabililty (true 
TPM = 0)

μa1 − 1 Exponential λ = 1/3 Mean of active 
component a1

μa2 − 4 Exponential λ = 1/3 Mean of active 
component a2

μa3 − 6 Exponential λ = 1/3 Mean of active 
component a3 

(testis only)
−μi Exponential λ = 1/3 Mean of inactive 

component
σ2 logUniform log ( min ) = log (0.01), Variance 

parameter shared 
by

log ( max ) = log (5)

all mixture 
components

Table 3. Genome and annotation information

Species Genome release

D. melanogaster r6.12
D. simulans r2.02
D. yakuba r1.05
D. eugracilis Deug_2.0
D. biarmipes Dbia_2.0
D. takahashii Dtak_2.0
D. ficusphila Dfic_2.0
D. kikkawai Dkik_2.0
D. elegans Dele_2.0
D. ananassae r1.05
D. bipectinata Dbip_2.0
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comprises two primary distributions: an inactive distribution 
characterized by lower mean expression levels and an active 
distribution with higher mean expression levels.

The inactive distributions is modeled as a spike-and-slab 
distribution, consisting of a point mass at TPM =0 with pro
portion of inactive genes in the spike denoted by ρ and a log- 
normal distribution with a log-mean of μi for inactive genes 
with leaky expression (TPM > 0). In contrast, the active com
ponent is a mixture of one or more log-normal distributions, 
each with log-mean(s) μak

> μi. All log-normal distributions 
share a common log-standard deviation parameter, σ. For de
tailed information about the model, refer to the supplementary 
text, Supplementary Material online of Thompson et al. (2020).

The proportion of protein-coding transcripts originating 
from inactive genes is computed from the latent mixture model 
parameters, θ, and is denoted by δ(θ). This proportion is given 
by the weighted mean of the log-normal component of the in
active distribution divided by the weighted average of the ex
pectation of all components that produce transcripts 
(TPM > 0):

δ(θ) =
(1 − ρ)(1 − ωa)eμi+1

2σ2

(1 − ρ)(1 − ωa)eμi+1
2σ2 + ωa

􏽐
k ωkeμak

+1
2σ2

(2) 

where eμ+1
2σ2 

is the mean of a log-normal distribution. Table 4
provides descriptions of the parameter symbols used.

The proportion averaged over the posterior uncertainty 
of the latent mixture model parameters, θ, is obtained by 
computing the mean of δ from N draws of θ from the 
MCMC:

Eθ∣X [δ(θ)] ≈
1
N

􏽘N

i=1

δ(θi). (3) 

Model Adequacy and Validation. We used posterior pre
dictive simulation to select a set of hyperparameters and 
number of mixture components that do not inappropriately 
influence the posterior. With zigzag’s posterior predictive 
simulation setting we simulated library expression distribu
tions and compared them to the data distributions through 
plots to select appropriate mixture distributions and prior 
thresholds (supplementary Data File S1, Supplementary 
Material online, upper-level plots). We found that 2 active 
mixture components for the accessory glands and 3 for the 
testis worked well. We visually analyzed posterior predict
ive plots output by zigzag and found that the simulated li
brary distributions from testes matched very closely with 
the data, while the accessory glands showed a much weaker 
match in many of the species (supplementary Data File S1, 
Supplementary Material online lower-level (library- 
specific) plots).

We checked the sensitivity of all genes to this mismatch to 
see which genes may violate the assumption of the same ex
pression state in all replicate samples by performing 
leave-one-library-out analysis. Each library was removed 
from the set and expression state probabilities were reesti
mated. Thus, for a set of 4 replicate libraries, we obtained 4 
expression state probabilities for each gene. Any gene where 
the difference between the maximum and minimum prob
ability of active expression was >0.25 was treated as un
known for downstream analyses. The accessory glands 
contained many more such genes (58–1049) than the testis 
(39–116). This could be due to the greater challenge of dis
secting the AG cleanly and the presence of contaminants 

from neighboring tissues, which we expect to be more vari
able among replicates.

Orthology Table and Species Tree Inference
An orthology table was estimated using OrthoFinder v. 2.4.0 
with default settings (Emms and Kelly 2019). This produced 
15,322 gene families including 8,660 conserved single-copy 
families (i.e. one gene per family in each of the 11 species), 
constituting 56% of all genes. A comprehensive list of 
D. melanogaster transcription factors was downloaded from 
FlyMine.org. Of the 757 TFs, 75% were in single-copy gene 
families.

The phylogenetic tree of the 11 Drosophila species was in
ferred using RevBayes (Höhna et al. 2016). The goal was to 
create a species tree with accurate relative node ages (branch 
lengths in time units rather than expected number of nucleo
tide substitutions) that could then be treated as fixed in the 
phylogenetic analysis of gene expression states. To construct 
this tree, we used 12 conserved single-copy genes from the da
taset that was used to infer a Drosophila chronogram by 
Turelli et al. (2018). In each species, we used the isoform 
with the longest protein sequence of the following genes: 
Ald1, bcd, Eno, esc, Glyp, Glys, ninaE, Pepck1, Pgi, pic, 
Tpi, and Taldo. Mafft v.7.471 on auto settings was used to 
align each set of 11 homologous proteins, followed by pal2nal 
v.14 (Suyama et al. 2006) to convert protein alignments into 
codon alignments. All codon alignments were then partitioned 
by codon position for phylogenetic analysis, yielding a dataset 
with 36 partitions.

All phylogenetic analyses were conducted in RevBayes 
v. 1.1.0. Posterior samples of relative chronograms were si
mulated under three clock models: a global clock (one rate 
for the whole tree), uncorrelated relaxed clock (UCLN) 
with one rate for each branch which is uncorrelated with 
neighboring branches, and an autocorrelated relaxed clock 
model (ACLN) where neighboring branch rates were corre
lated (Drummond et al. 2006). All partitions were assumed 
to evolve at the same clock rate on each branch, with root 
age set to 1. All 3 models assumed the same substitution 
model for each individual partition (3 partitions per gene 
for 12 genes): GTR + G + I, with G having 4 rates that are 
distributed according to a discretized Gamma distribution 
with mean set to 1 and I being the proportion of invariant 
sites.

For the tree prior in all analyses, we assumed the sampled 
birth-death model of Yang and Rannala (1997). For the strict 
and uncorrelated analyse0s, the number of species in the clade 
that spans the sampled species was assumed to be around 220– 
240, which is slightly larger than the number of described spe
cies in the melanogaster species group (spanning the clade 
from D. ananassae to D. melanogaster). We averaged over 
this uncertainty by specifying an informative prior of 
Gamma (529, 2.3). MCMCs were run for 75,000 generations 
with 10% burnin. ESS was checked so that all parameters had 
ESS > 150. Multiple independent MCMCs converged on iden
tical posterior distributions for parameters and trees in each 
model.

We inferred the topology of the tree under an uncorre
lated relaxed clock model which supported the phylogeny 
used with at least 0.92 posterior probability at each branch 
except for the placement of D. kikkawai, which was equal
ly likely placed with the (D. anannassae + D. bipectinata) 
clade as with the other clade at the first post-root split. 

16                                                                                                                             Thompson et al. · https://doi.org/10.1093/molbev/msaf106
D

ow
nloaded from

 https://academ
ic.oup.com

/m
be/article/42/5/m

saf106/8151468 by guest on 08 June 2025

http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf106#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf106#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf106#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf106#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf106#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf106#supplementary-data
https://FlyMine.org


To estimate branch lengths under a more realistic autocor
related relaxed clock model, we selected the topology that 
placed D. kikkawai basal to the other 9 species (Suvorov 
et al. 2021) and treated that as fixed. The tree topology 
matched almost exactly the topology that was recovered 
in a larger analysis that included >100 species and several 
hundred conserved dipteran BUSCO genes (Suvorov et al. 
2021). The one difference was the locations of D. elegans 
and D. ficusphila, which are reversed in our UCLN analysis 
with posterior probability = 0.92 on the branch separating 
the two. The maximum a posteriori (MAP) tree with UCLN 
MAP estimate of topology and ACLN MAP estimate of 
branch lengths was used for subsequent analyses of tran
scriptome evolution.

Transcriptome Evolution Inference
We modeled the evolution of gene expression states as a 
continuous-time Markov chain (CTMC) with 2 states, {OFF, 
ON}. The transition rates between these states vary across 
genes and branches of the phylogenetic tree. Additionally, 
the branch-specific rates are correlated between the 2 organs.

Relative rates model
We assume that the process is at stationarity over the time 
scale of the whole tree, with genes at the root being active 
(ON) in organ i with frequency πi, where i indexes the organs 
{AG, Testis}. The relative transition rate matrix, Qi, is parame
terized by πi such that the mean transition rate across all genes 
is one (Yang 1994). Specifically,

πiQi21
+ (1 − πi)Qi12

= 1, 

where Qi12 
is proportional to the rate at which genes are acti

vated (turned ON), and Qi21 
is proportional to the rate at 

which genes are deactivated (turned OFF). The relative rate 
matrix is therefore:

Qi =
−

1
2(1 − πi)

1
2πi

−

⎡

⎢
⎢
⎣

⎤

⎥
⎥
⎦, 

where dashes along the diagonal are set so that rows sum to 
zero.

Among-gene rate variation model
To model rate variability among genes, we specified a scale 
factor, ai,g, to scale the relative rate matrix, Qi for each gene, 
g. This variable is drawn from a discretized gamma distribu
tion with mean fixed to 1 (Yang 1994):

ai,g ∼ DiscretizedGamma(α = ξi, β = ξi, k = 6).

Here, the distribution is a mixture model in which a gamma 
distribution, with mean α/β = 1 and variance α/β2 = 1/ξi, 
and is divided into k = 6 intervals of equal probability mass. 
The mixture weights are thus 1/6. The rate category at each 
interval is the mean rate for that interval. ξi is the precision 
of the distribution.

Among-branch rate heterogeneity model
In our model of turnover rate heterogeneity across branches of 
the tree, the evolutionary rates for both organs on each branch 
follow a bivariate log-normal distribution. The distribution of 

the bivariate log-transformed rates, log rb, for the 2 organs on 
branch b are given by:

log rb ∼ MVN(μ, Σ), 

The transition rate matrix for gene, g, in organ, i, on branch, b, 
is thus equal to

ri,bai,gQi.

We summarize the prior distributions for the paramaters of 
the above model in Table 5:

Markov Chain Monte Carlo (MCMC)
We sampled from the model posterior using RevBayes (Hohna 
et al. 2016). After an initial burnin period, we ran the MCMC 
for 10,000 generations sampling every 5 generations. We con
firmed that two independent runs converged by measuring the 
PSRF for all parameters and checking that it was < 1.2. We 
also checked that ESS was at least 200.

GO Analysis
GO analyses were performed in R v4.1.1 using clusterProfiler 
(v4.0.5; Yu et al. 2012). Outputs were plotted using 
clusterProfiler, ggplot2 (v3.4.4), and ggVennDiagram (v1.5.2; 
Gao et al. 2021 ). Ontogeny was limited to “Biological 
Process” and a Benjamini-Hochberg procedure was used to cor
rect for the false discovery rate. A q-value cutoff of 0.05 was 
used. The org.Dm.eg.db (v3.13.0) package was used for gene 
annotation data.

BEST Analysis
The prior distributions and data distribution assumed in BEST 
(Kruschke 2013) are listed in Table 6.

Table 5. Summary of the probabilistic model parameters and their 
distributions or definitions

Parameter Distribution 
Type

Distribution 
Parameters

Description

πi Beta α = β = 1 Frequency genes at 
the root are active

ξi LogNormal logmean = ln(5), Precision of the 
discretized gammalogsd = 0.587
distribution of ai,g

ϕ Uniform min = − 10, Log mean branch 
scale parametermax =1

αi Beta α = 2, β = 2 Proportional mean 
rates of 2 organs

μi Defined ϕ + ln (2αi) Log mean branch 
rate of organ i

θ LogUniform min =0.0001, Branch rate variance 
scale parametermax =5

βi Beta α = 10, β = 10 Proportional branch 
rate variance

σ2
i Defined θ + 2βi Variance of branch 

rates of organ i
C LKJ η = 1 Correlation matrix

S Defined
σ1 0
0 σ2

􏼒 􏼓

Organ branch rate 
standard deviation

Σ Defined SCS Covariance matrix

The LKJ distribution is the Lewandowski-Kurowicka-Joe distribution 
(Lewandowski et al. 2009).
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Supplementary Material
Supplementary material is available at Molecular Biology and 
Evolution online.
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