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Abstract

Changes in gene expression are a key driver of phenotypic evolution, leading to a persistent interest in the evolution of transcriptomes.
Traditionally, gene expression is modeled as a continuous trait, leaving qualitative transitions largely unexplored. In this paper, we detail the
development of new Bayesian inference techniques to study the evolutionary turnover of organ-specific transcriptomes, which we define as
instances where orthologous genes gain or lose expression in a particular organ. To test these techniques, we analyze the transcriptomes of
2 male reproductive organs, testes and accessory glands, across 11 species of the Drosophila melanogaster species group. We first
discretize gene expression states by estimating the probability that each gene is expressed in each organ and species. We then define a
phylogenetic model of correlated transcriptome evolution in 2 or more organs and fit it to the expression state data. Inferences under this
model imply that many genes have gained and lost expression in each organ, and that the 2 organs experienced accelerated transcriptome

turnover on different branches of the Drosophila phylogeny.
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Introduction

Phenotypic evolution, broadly speaking, can result from 3
general mechanisms: gains and losses of genes; mutations in
the coding sequences of genes, leading to changes in protein
functions; and regulatory mutations, which lead to changes
in gene expression. While the exact balance between these
modes of genetic change in driving the origin of new pheno-
types is a debated topic, it is clear that regulatory evolution
plays a prominent role (King and Wilson 1975; Hoekstra
and Coyne 2007; Wray 2007; Carroll 2008; Stern and
Orgogozo 2008 ; Courtier-Orgogozo et al. 2020). Across a di-
verse range of taxa and traits, changes in the expression of or-
thologous genes are pivotal in creating major phenotypic
differences within and between species (e.g. Rebeiz et al.
2009; Fraser et al. 2010; Loehlin et al. 2019; Kowalczyk
et al. 2022; Marand et al. 2023).

RNA sequencing (RNA-seq) technology has enabled quan-
tification of gene expression levels for the entire transcriptome
across diverse biological conditions and developmental stages
(Mortazavi et al. 2008; Wang et al. 2009; Marguerat and
Bahler 2010; Hrdlickova et al. 2017). As a result, RNA-seq
has become essential for studying regulatory evolution, pro-
viding comprehensive and quantitative data for inferring
large- and small-scale changes in transcriptomes associated
with adaptive evolution (Harrison et al. 2012; Wittkopp and
Kalay 2012; Todd et al. 2016). Transcriptome-level studies
of gene expression evolution have largely focused on quantita-
tive differences between species, modeling a gene’s expression

as a continuous trait. Indeed, most evolutionary changes in
gene expression are of a quantitative nature (Rifkin et al.
2003; Brawand et al. 2011; Harrison et al. 2012; Romero
et al. 2012; Coolon et al. 2014; Nourmohammad et al.
2017; Cardoso-Moreira et al. 2019). By contrast, qualitative
changes, manifested as discrete gain and loss of gene expres-
sion in a particular tissue over evolutionary time (“transcrip-
tome turnover”), have received comparatively little attention
(Mika et al. 2021, 2022). Consequently, questions about the
rates of transcriptome turnover, the consistency of these rates
over time and among lineages, and the degree of correlation in
turnover rates between different organs remain unresolved.
This may be an important deficit in our understanding of
phenotypic evolution given the many examples where gain
or loss of gene expression in an organ has a profound impact
on its structure or function (Glassford et al. 2015; Hu et al.
2018; Kellenberger et al. 2023; Molina-Gil et al. 2023).
Studying gene expression at a qualitative level brings with it
two significant advantages. The first is biological. Relative to
quantitative changes, deactivation of a gene, or activation of
an ancestrally inactive gene, in a particular organ might be ex-
pected to have a more profound impact on phenotypic evolu-
tion (Harlin-Cognato et al. 2006; Wray 2007; Carroll 2008;
Tanaka et al. 2011; Glassford et al. 2015; Thompson et al.
2016, 2018; Martinson et al. 2017; Hu et al. 2018). The gen-
erality of this idea, which is currently supported by anecdotal
examples, needs to be tested systematically at the genome-
wide level. The second advantage is technical. If inferred reli-
ably, discrete expression states should be less sensitive to
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technical factors such as sequencing depth and library size, dif-
ferences in cell type composition caused by dissection variabil-
ity, and the well-documented problems of comparing
compositional values such as TPM or FPKM between tissues
and species (Brawand et al. 2011; Dillies et al. 2013; Li et al.
2014; Musser and Wagner 2015). While the effect of some
of these variables on cross-species and cross-tissue quantita-
tive analyses can in principle be minimized through normaliza-
tion approaches, selecting an appropriate evolutionary model
for data under complex transformations and normalization
schemes can be challenging to implement and interpret
(Vandesompele et al. 2002; de Jonge et al. 2007; Brawand
et al. 2011; Dillies et al. 2013; Chen et al. 2014; Quinn et al.
2018; Cardoso-Moreira et al. 2019; Zhou et al. 2019;
Dimayacyac et al. 2023; Mantica et al. 2024).

The main obstacle to investigating transcriptome turnover on
a genome-wide scale is the difficulty of translating the continu-
ous RNA-seq data (TPM or FPKM) into discrete (ON/OFF)
gene expression states. Many genes that play important roles
in development can be expressed at low levels in just a few cells,
making their expression difficult to detect reliably. Conversely,
some genes that are not actively expressed in a particular tissue
may nevertheless be detected at non-zero levels in a transcrip-
tome sample due to technical artifacts or non-specific transcrip-
tion that occurs throughout the genome (Singh and Petrov
2007; Struhl 2007; Schwanhausser et al. 2011; Jensen et al.
2013; Wagner et al. 2013; Artieri and Fraser 2014; Kin et al.
2015; Lenive et al. 2016; Ham et al. 2020). Historically, gene
expression states in transcriptomes have been discretized using
hard expression thresholds; for example, genes present above
1-3 TPM may be considered actively expressed, while those be-
low 1TPM are assigned as inactive (Mortazavi et al. 2008;
Hebenstreit et al. 2011; Wagner et al. 2013; Huang et al.
20135; Cridland et al. 2020; Mika et al. 2021, 2022).

In some cases, specific expression cut-offs are well justified
on mechanistic biological grounds implied by chromatin
marks associated with active or repressed transcription
(Singh and Petrov 2007; Ernst et al. 2011; Hart et al. 2013;
Wagner et al. 2013). However, fixed cut-offs on relative
expression levels are poorly suited to cross-species and cross-
tissue comparisons, since it is far from clear that a single
expression threshold can accurately distinguish between ac-
tive expression and transcriptional noise in all genes, species,
and tissues, especially when the species are distantly related
and/or the tissues differ strongly in transcriptome complexity.
A change in expression of a small subset of highly expressed
genes will alter the relative expression of the rest of the distribu-
tion thus shifting the threshold without any changes in expres-
sion among the rest of the genes. In fact, our recent work has
shown that the boundary between active expression and noise
is different even among tissues that are physiologically similar
(e.g. different primate brain regions; Thompson et al. 2020).

To develop a more objective and generally applicable ap-
proach to discretizing gene expression states, we recently cre-
ated and validated a method, zigzag (Thompson et al. 2020),
for inferring gene expression states from replicated RNA-seq
datasets. zigzag uses Markov chain Monte Carlo to estimate
the posterior probability of active expression (the “ON” state)
for each gene in each tissue using a well-defined statistical
model and testable prior assumptions, enabling easy valid-
ation. zigzag achieves this by learning universal landmarks
in transcriptome datasets that distinguish between active and
inactive genes (Hebenstreit et al. 2011; Hart et al. 2013;
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Wagner et al. 2013; Huang et al. 2015; Thompson et al.
2020; Costa et al. 2022). This method was shown to be sensi-
tive enough to correctly classify expression states of transcrip-
tion factors expressed in only a few cells in the drosophila
testes while classifying smell and taste receptor genes as largely
inactive in the same tissue despite detecting reads mapping to
these genes (Thompson et al. 2020). This tool allows research-
ers to either use the probabilities in downstream analyses or
set thresholds based on the probabilities which, unlike thresh-
olds on relative measures, are directly comparable between
species and tissues. The ability to classify gene expression
states probabilistically using zigzag opens the way for investi-
gating the evolutionary turnover of tissue-specific transcrip-
tomes (i.e. the transition of conserved genes between OFF
and ON expression states in each tissue) using well-established
phylogenetic models of discrete-trait evolution.

In this study, we present a pipeline that integrates zigzag
with phylogenetic comparative methods to infer the evolution-
ary dynamics of transcriptome turnover. To test this pipeline,
we used RNA-seq datasets from 2 male reproductive organs,
testes and seminal fluid-producing accessory glands (AGs),
across 11 Drosophila species. We chose these organs as the
test subject for our approach because previous studies have
shown that the male reproductive system evolves faster than
other tissues at the level of both protein sequence (Begun
et al. 2000; Kern et al. 2004; Haerty et al. 2007; Patlar et al.
2021) and gene expression (Meiklejohn et al. 2003; Ranz
et al. 2003; Rifkin et al. 2003; Zhang et al. 2007; Pal et al.
2023), suggesting that we may be able to estimate the rate of
transcriptome turnover even with a limited number of taxa.

With this analysis pipeline we were able to obtain estimates
of the rate of transriptome turnover for each organ, how much
those rates correlate between the 2 organs, the degree of punc-
tuated evolution or “burstiness” of turnover, and how much
rates vary among different gene families and functional cat-
egories. Our results suggest that qualitative gains and losses
of gene expression are fairly common in these organs, and
that the rates of turnover vary over time. We discuss the pos-
sible implications of widespread activation and silencing of
genes for organ evolution. We also discuss a number of im-
portant challenges and pitfalls associated with this approach.

Results

Transcriptomes of Testes and Accessory Glands in
11 Drosophila Species

We sequenced the transcriptomes of testes and accessory
glands in 11 species of the Drosophila melanogaster species
group (see Materials and Methods). We used zigzag
(Thompson et al. 2020) to assign genes to active or inactive ex-
pression states in the testes and accessory glands of each spe-
cies under multiple probability thresholds. zigzag jointly
estimates a probability of active expression for all genes thus
producing a distribution of gene-specific marginal posterior
probabilities of active expression. All genes with probabilities
above an upper threshold were classified as active while those
below a lower threshold were considered inactive. As an
example, Fig. 1 (top) shows the estimation performed for
D. melanogaster at P < 0.5 for the inactive and P> 0.5 for
the active state.

Inference under the zigzag model suggests that a larger pro-
portion of the genome is expressed in the testes compared to
the AG (Fig. 2), which supports recent findings (Cridland
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Fig. 1. Probabilistic estimation of discrete expression states from continuous RNA-seq data using zigzag at 2 different probability cutoffs. Top row: genes
with posterior probabilities of active expression P < 0.5 are assigned to the inactive state (blue), while those with P > 0.5 are assigned to the active state
(red). Bottom row: P < 0.05 are inactive and P > 0.95 are active.; genes with intermediate probabilities are not assigned to either active or inactive states.
Similar estimation was performed for all species, separately for each tissue, under a range of probability thresholds. Gray shows the combined frequency
of genes classified as active, inactive or neither. As the probability cut-offs become more stringent, the overlap between active and inactive distributions is

reduced, but a larger fraction of genes remain unclassified.

et al. 2020). The inferred proportion of expressed genes is
44-59% in the AG and 63-74% in the testis (lowest 2.5%
quantile to highest 97.5% quantile among species posterior
distributions). In most cases, a higher proportion of single-
copy genes (gene families containing a single gene in all
species) are actively expressed, compared to the rest of the
genome (Fig. 2). The single-copy set is likely enriched for
housekeeping genes, which are broadly expressed and tend
to have less copy number variation in populations than other
genes (Dopman and Hartl 2007; Henrichsen et al. 2009).
The fraction of transcripts coming from inactive genes is
similar in the 2 organs. Averaging over the posterior distribu-
tion of zigzag’s latent mixture model implies that inactive
genes contribute <1% of the total mRNA in each transcrip-
tome. Specifically, the percentage ranged from 0.3 to 0.5%
of the AG transcriptome and 0.2-0.3% of the testis transcrip-
tome among all species. We estimated the threshold level of ex-
pression at which a gene is, on average, as likely to be active as
inactive (probability of active expression P = 0.5). Depending
on the species, this threshold ranges from 1.0 to 2.1 TPM in
the AG and 1.0 to 1.8 TPM in the testis. For reference, in a

homogeneous cell mixture, if the number of mRNA tran-
scripts in each cell is on the order of 10° — 10° (Islam et al.
2014), then a gene with average expression of 1TPM will
have one or more transcripts in about 10-60% of cells—
assuming binomial sampling. Our variable threshold esti-
mates, which are similar to those obtained by other methods
in other tissues and organisms (Wagner et al. 2013; Costa
et al. 2022), confirm that no single “hard” cut-off of TPM
or FPKM values would be equally appropriate for all species
and tissues (Thompson et al. 2020).

Inference under the model also supports previous findings that
the testis and AG transcriptomes are highly overlapping
(Cridland et al. 2020). Under a more stringent threshold where
genes with probability of expression between 0.1 and 0.9 were
classified as unknown, we found that the AGs and testes share
between 4,681 and 6,682 actively expressed (P > 0.9) genes,
depending on the species. The 2 organs differ in the number
of exclusive genes, i.e. those actively expressed in one but
not the other organ. The AGs express between 81 and 189 ex-
clusive genes per species, while the testes are more variable
with 287 and 1,887 exclusive genes per species (Table 1).
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Fig. 2. Posterior distributions of the weight active parameter in the zigzag model (w), which measures the proportion of all protein-coding genes that are
actively expressed in the AG (blue) and testes (red) of each species; species phylogeny is shown on the left. Vertical lines indicate the expected proportion
of single-copy genes (out of n=8,660) that are active in each organ, calculated from the posterior probabilities of active expression of each gene in each
species. If the expression states of genes were, on average, the same for single-copy and non-single-copy genes, the peaks of the weight active posterior
distributions would coincide with the vertical lines. In most cases, however, a higher proportion of single-copy genes is estimated to be active, compared

to the total protein-coding genome.

Table 1. The transcriptomes of testes and accessory glands

AG Testis
% active protein-coding genes 44-59% 63-74%
% transcripts from inactive genes 0.3-0.5% 0.2-0.3%
TPM of genes with P =0.5 active 1.0-2.1TPM  1.0-1.8 TPM
Number of exclusive expressed genes 81-189 287-1,887

This supports previous studies in D. melanogaster, D. yakuba,
and D. simulans showing that the testes express an elevated
number of tissue-specific genes relative to other tissues, including
the AGs (Cridland et al. 2020; Takashima et al. 2023). These are
likely minimum estimates due to our conservative threshold for
active and inactive expression calls. Our zigzag analyses confirm
that the set of genes that are active in a transcriptome vary not
just among organs but between species (Fig. 3).

Expression of X-linked Genes in Male Reproductive
Organs

Previous studies have found that the X chromosome is de-
pleted for genes with male-biased expression (Parisi et al.
2003; Ranz et al. 2003; Mueller et al. 2005; Sturgill et al.
2007; Mahadevaraju et al. 2021). In the genus Drosophila,
genes with testis-biased expression show a tendency to move
from the X to the autosomes (Vibranovski et al. 2009), while

accessory gland proteins (Acps) are significantly under-
represented on the X chromosome in D. melanogaster (Ravi
Ram and Wolfner 2007). In these studies, tissue-specific (or
tissue-enriched) genes were identified on the basis of expres-
sion bias, i.e. quantitative difference in transcript abundance
between different organs or between males and females.
These studies reveal how organs and sexes are represented
on the X chromosome, but not necessarily how the X is repre-
sented in the transcriptome of each organ. We found that a
higher proportion of X-linked genes are expressed in both tes-
tes and accessory glands (AGs) compared to autosomal genes
(Fig. 4a). However, X-linked genes expressed in the testes have
about 30% lower median expression levels than their auto-
somal counterparts (Fig. 4b). These results are also consistent
with the findings of Mahadevaraju et al. (2021; Fig. 1j). In
contrast, we observed little difference in AG expression.
These findings suggest that while male-specialized genes are
under-represented on the X, a greater fraction of X-linked
genes are active in male sex organs, albeit with lower expres-
sion levels in the testes (Mahadevaraju et al. 2021; Witt
et al. 2021; Wei et al. 2024).

Phylogenetic Model of Transcriptome Turnover

To investigate the evolutionary processes that contributed to
the patterns we observe in our data, we fit a model of
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expression state among the 11 species. Dot plots show the estimated TPM values for each of the 4-5 biological replicate RNA-seq libraries in each
species, with the range of TPM values indicated under the dot plots. TPM = 1 is indicated by a vertical dashed line. Hot and cold color gradient and
numbers to the right of the dots show posterior probability of active expression under the zigzag model.

transcriptome evolution in the 2 organs to a time-calibrated
phylogenetic tree and the expression states for single-copy
genes in both organs (see Methods). In brief, we assumed
that each gene’s expression state evolved as a two-state

(active/inactive) continuous-time Markov chain (CTMC)
with turnover rate (rate of activation/deactivation of expres-
sion) varying across branches according to an uncorrelated re-
laxed clock model where each branch of the tree was assumed
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(b) X vs. autosomal active genes (P > 0.5)
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Fig. 4. Comparison of gene expression between the X chromosome and autosomes. a) Each colored dot shows the expected proportion of actively
expressed genes (averaged over the posterior probability of expression) in a given species and organ (testis shown in red; AG shown in blue.). Lines
connect the autosomal (“A”) and X-linked categories within each species. b) Lines connect the median expression levels of actively expressed genes for
autosomal and X-linked genes within each species. Genes are considered “active” if their probability of expression is >0.5.

to have a unique mean turnover rate that correlated between
the 2 organs. We also included among-gene rate variation in
our model to account for differences in turnover rate among
genes.

Ideally, we would average over the uncertainty of the ex-
pression states of all genes while fitting evolutionary models
to the zigzag posterior probabilities. Unfortunately, such
phylogenetic analysis methods are not currently available for
transcriptome-scale comparative data, which involve thou-
sands of characters. We therefore set 2 probability thresholds
derived from a single value we call a to classify genes as active
(high probability of active expression; >1 — a), inactive (low
probability of active expression; <a), or unknown/missing
data (intermediate probability of active expression; between
a and 1 — a). Because, to our knowledge, this type of study
has not been performed before, it was important to investigate
the consistency, adequacy, and robustness of not just the
zigzag predictions of expression state, but also of the evolu-
tionary model fit to those inferred expression states. The prob-
ability cutoffs for active and inactive genes in particular can
potentially have a large impact on inferences. If these cutoffs
are too conservative, too much data will be thrown out and
the prior will have a strong impact on our inferences. As the
cutoffs approach 0.5, more of the data is used for inference
but the number of misclassifications increases, which could
overpower the true signal in the data.

To assess the overall adequacy of our evolutionary model
and to select appropriate probability cutoffs for gene expres-
sion states, we conducted a series of cross-validation experi-
ments and sensitivity tests (see Methods and supplemental
text S1, Supplementary Material online). The results of this
cross-validation experiment revealed that the probability
thresholds of a=0.05, 0.1, and 0.25 work well for our data
such that phylogenetic inferences of the expression states of
the hold-out data agreed with the zigzag estimates with prob-
ability near 0.88 on average (see supplemental text S1, figs.
S5-7, Supplementary Material online). Accuracy was similar
for each species (supplementary fig. S6, Supplementary

Material online). We performed phylogenetic analyses under
all cutoffs, and mostly report the estimates based on an a =
0.1 as our most confident estimates since that level had the
highest average accuracy.

History and Dynamics of Transcriptome Turnover

Inferences under our model suggest distinct modes of evolu-
tion for the 2 organ’s transcriptomes. Our model allowed us
to directly infer the correlation of branch-specific rates of tran-
scriptome turnover in the 2 organs. Despite there being a great
deal of uncertainty about the strength of this correlation (95 %
highest posterior density interval (HPD) for the correlation
parameter is [—-0.05, 0.76]), the correlation is likely no >0.76.

We estimated the rates at which genes were turned on and
off in the AG and testis and explored how those rates varied
among genes and organs as well as among the different
branches of the species phylogeny. Assuming that the root
age of the species tree is approximately 25 million years
(Obbard et al. 2012), our posterior estimates of branch rates
suggest that the accessory glands experienced a pulse of rapid
transcriptome turnover around 10 million years ago, near the
base of the Oriental lineage of the melanogaster species group
(Fig. 5). In contrast, we infer much more subdued rates of
turnover in the testis on those branches. Also, in contrast to
the AG, we infer accelerated transcriptome turnover in the tes-
tis on the D. melanogaster tip branch, compared to the rest of
the tree (Fig. 5, branch 18). For probability cutoffs (a) of 0.05,
0.1, and 0.235, the relative rates of turnover were fairly robust
to the choice of probability cutoff, with branches 15 and 16
near the base of the Oriental lineage consistently showing
the highest rates of turnover for accessory glands, while
some terminal branches consistently show elevated turnover
in testes, in particular in D. melanogaster (supplemental text
S1 figs. S1-54, Supplementary Material online).

At the cutoff of a = 0.1, we estimate that the mean gene ex-
pression turnover rate is 1.6 X 1073 per million years in the AG
and 2.0x 1073 per million years in the testis (Table 2;
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supplementary Data file S2, Supplementary Material online).
Overall, the per-gene turnover rate appears to be on the order
of 1073 per MY (Table 2). For reference, this is on the same
order of magnitude as the per nucleotide rate of substitutions

in Drosophila, where estimates are around 8 x 1073 per MY
(Obbard et al. 2012). Thus, for a gene of size 1 kb, we expect
it to change expression state on the order of once every 1,000
base changes. For a genome of around 15,000 genes, these
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Table 2. Mean turnover rates per gene for AG and testis at different
probability cutoffs (&)

Probability cutoff ~AG mean turnover rate  Testis mean turnover

(a/1 - a) per gene (my~') rate per gene (my~')
0.5 5.8x 1073 3.8x 1073
0.25/0.75 3.1x1073 2.9%x1073
0.1/0.9 1.6 x 1073 2.0x1073
0.05/0.95 1.0x 1073 1.5x1073
0.01/0.99 0.4x1073 0.7x1073
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Fig. 6. Transcriptome turnover is concentrated among a minority of
genes. Proportion of single-copy genes (n = 8,660) are ranked on the X
axis by their rate of change, from fastest to slowest evolving. The red
(testis) and blue (AG) curves show the cumulative proportion of
transcriptome turnover events explained by each subset of genes. For
example, 20% of genes account for nearly 80% of all turnover in the AG.
The black line shows the expected curve if all genes turned over at the
same rate.

turnover rates imply that roughly 40 expression activation/de-
activation events happen in each organ per million years.
However, this does not imply a massive rewiring of the tran-
scriptome. Most expression turnover is likely driven by fre-
quent changes in the expression state of a relatively small
subset of genes (Fig. 6).

To estimate the variation among genes in contributing to
transcriptome turnover, we analyzed the posterior distribu-
tion of the parameters of the among-site rate variation model.
This model draws gene evolution rates from a discretized gam-
ma distribution (see Methods). In the accessory glands, we es-
timate that half of all transcriptome turnover of single-copy
genes is being driven by about 10% of the genes, while about
15% of genes are driving half of all changes in the testis.
Because these estimates come from single-copy genes, which
appear to be more likely to be expressed in the AG and testis
compared to the rest of the genome (Fig. 2), these rates of turn-
over probably differ from the genome average and, we suspect,
underestimate the average rate for all genes. On the other
hand, transcriptome turnover may be slower in other tissues
compared to the rapidly evolving male reproductive system.
In summary, our analyses imply that the rate of transcriptome
turnover changes over time independently in the 2 organs and
is highly variable among genes.

Thompson et al. - https://doi.org/10.1093/molbev/msaf106

We investigated 2 plausible artifacts that could cause the in-
ferred patterns of branch rate variation in these 2 organs. One
potential artifact could be caused by a subset of genes exhibit-
ing a very high rate of turnover, such that phylogenetic infor-
mation is quickly erased to different degrees in different parts
of the tree, e.g. longer branches vs. shorter branches near the
tips. A second artifact could be caused by our method of clas-
sifying genes as ON or OFF. Our inferences could be highly
sensitive to misclassification, which could lead to higher esti-
mates of turnover rates near the tips of the tree. To explore
these potential sources of error, we simulated 2 datasets under
these scenarios using sim.char in the R package geiger v2.0.11
(Pennell et al. 2014), with the same number of genes and spe-
cies and the same tree as the Drosophila dataset. In both sim-
ulations, activation rate equaled deactivation rate and branch
rates were held constant in order to test whether these poten-
tial problems could lead our method to infer significant branch
rate variation where none exists. In the first simulation, all
genes evolved at the same rate, except 5% of genes evolved
100-fold faster. In the second simulation, there was no vari-
ation in rates among genes, but 1% of the genes in each species
and organ had their expression state flipped to simulate mis-
classification. Figure 7 shows that the branch rates at shorter
terminal branches in our model are sensitive to both scenarios.
Thus, the elevated rates observed on branches 1, 2, 9, 10, and
11 may be caused in part by state misclassification, a very high
turnover rate in a subset of genes, or both.

Turnover Rate and Biological Function

We tested whether the genes that show elevated turnover rates
in male reproductive organs are enriched for particular bio-
logical functions. To do this, we performed gene ontology
(GO) analysis on the sets of genes that showed turnover rates
at least two-fold higher than the mean. This analysis was done
separately for AGs and testes, using all singleton genes ex-
pressed in the corresponding tissue as the background. Eight
GO terms in the testis, and 20 in the AG, showed significant
enrichment (Fig. 8a, b; and supplementary fig. S7 in
supplemental text S1, Supplementary Material online).
There was strong overlap in the significant terms between
the 2 tissues, such that all gene categories that were enriched
in the testis were also enriched in the AG. However, there
was only a limited overlap between the individual genes driv-
ing the enrichment (Fig. 8c). The enriched GO terms were re-
lated to sensory perception (including olfactory and gustatory
receptor genes and odorant-binding proteins), GPCR signal-
ing (especially neuropeptide signaling), and cuticle develop-
ment. The AG additionally showed enrichment for terms
related to cilium organization, membrane ion transport and
membrane projection.

The pattern of unusually fast turnover could potentially be
explained by contamination of some samples with RNA from
non-target tissues. For example, the presence of genes related
to cilium organization in AG samples could reflect contamin-
ation from sperm, transcripts related to cuticle development
could be coming from epithelial tissues, and genes related to
GPCR signaling and sensory perception may reflect contamin-
ation from neurons that innervate the reproductive organs.
However, several lines of evidence argue against contamin-
ation being a major factor. First, other genes that are highly
expressed in the potential sources of contamination (such as
ion channels and sperm-specific genes) do not show up in
the enrichment analysis. Second, the inferred gains of
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expression are generally consistent across replicates of the
same species (Fig. 8d). Third, these gains are often associated
with high TPM counts (Fig. 8d). Fourth and most important,
different genes in the same GO category show expression gains
in different species (Fig. 8d), whereas contamination would
produce a highly correlated gain. For these reasons, contamin-
ation is unlikely to be a major contributor to the rapid tran-
scriptome turnover we observe.

We do not know what roles, if any, the genes undergoing
rapid turnover play in male reproductive organs, but
some enriched terms are consistent with their physiology.
Neuropeptides are known to regulate copulation, for ex-
ample, by coupling mating duration to the transfer of sperm
and seminal fluid (Taylor et al. 2012). Similarly, the ability
of males to upregulate sperm production in response to the
presence of females depends on the ability of somatic cyst
stem cells of the testis to respond to neuronally secreted oc-
topamine (Martin-Diaz and Herrera 2024). It is conceivable,
therefore, that co-option of genes involved in neuropeptide
signaling could lead to lineage-specific changes in inter-organ
communication or the regulation of secretory cell activity—
changes that may, for example, have implications for the
males’ ability to dynamically respond to the sociosexual envir-
onment (e.g. Hopkins et al. 2019).

Turnover of Transcription Factors

Differences in the rate of expression evolution among classes
of genes can suggest possible mechanisms for phenotypic evo-
lution. In particular, gain or loss of a transcription factor ex-
pression can have large downstream consequences on the

transcriptome and thus on the function of an organ. If a tran-
scription factor is lost or gained by a transcriptome it may
bring with it downstream targets, resulting in a pulse of
transcriptome turnover in a lineage on the phylogeny. We
examined the mean difference in the turnover rate between
transcription factor genes and the rest of the single-copy
gene families in our phylogenetic study. To accomplish this
we analyzed the posterior distribution of gene-specific rates
from the among-gene rate variation model (see Methods).
Our data and models imply that transcription factors change
expression states at different rates in the accessory glands
and testes, where they evolve at a relatively slow rate in the
former and a relatively fast rate in the latter. We report
the posterior credible intervals of the percent difference of
the mean rate (PDMR) between each group of genes (i.e.
TF and non-TF). PDMR is calculated with the following for-
mula:

mean TF rate — mean non-TF rate

PDMR =
( mean non-TF rate

) x 100 (1)
Our models and the RNA-seq data imply that expression states
of single-copy transcription factors in AGs turn over on average
10-34% slower than those of non-TF single-copy genes.
Conversely, TF expression states in testes turn over 0-17% fast-
er compared to non-TF genes (colored lines and circles in each
density in Fig. 9;a-b, blue and red curves). To check how fre-
quently random subsets of genes deviate from the genome aver-
age at least this strongly, we measured the mean PDMR
(M-PDMR) for each comparison and created an empirical null
distribution from random partitions of the data where we sum-
marized each random partition with the same statistic, the
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Fig. 8. Genes with elevated turnover rates are enriched for similar functional categories in testes and AGs. a) A dot plot from a gene ontology (GO) analysis
showing all significantly enriched (g-value <0.05) biological process terms among the genes showing rapid turnover in the testis. Genes are designated as
showing rapid turnover if they have rates at least two-fold higher than the mean. The list of all singleton genes expressed in the testis is used as the

background. b) The top 8 significantly enriched terms in the AG; analysis performed the same way as in (a). The full list of significantly enriched AG terms
can be found in supplementary fig. S8 of supplemental text S1, Supplementary Material online. ¢) Venn diagrams illustrating the overlap between the

genes showing rapid turnover in the testis and AG, in each of the shared enriched GO terms. Note that most individual genes are exclusive to one organ.
d) Dot plots showing the TPM values for selected genes showing high turnover rates, mapped onto the species phylogeny. Two genes per functional
class (neuropeptide receptors, sensory perception, and cilium organization) are shown. For each pair, both genes are shown in the same organ. Dots are
colored in accordance with the posterior probability of active expression inferred from the zigzag model. Separate dots within a species represent different

biological replicates.

M-PDMR (Fig. 9;a-b, black curves). Results show that for TF
genes, this statistic is extreme relative to the reference set in
both AGs and testis, with < 0.1% of genes in the reference set
having more extreme statistics for both organs. Thus, at the level
of discrete ON/OFF transitions, our analysis implies that TF
genes evolve slightly faster than non-TF genes in the testis, but
significantly slower than non-TF genes in the AG.

Turnover of X-linked Genes

X-linked genes may evolve differently from autosomal genes
due to the differences in selective pressures and effective

population size that the X chromosome experiences in males
vs females (Parisi et al. 2003; Ravi Ram and Wolfner 2007;
Singh and Petrov 2007; Sturgill et al. 2007; Vibranovski
et al. 2009; Khodursky et al. 2020). We tested whether tran-
scriptome turnover rate differs between X-linked and auto-
somal genes using the same approach as described above for
transcription factors. We found that both classes of genes
turn over at similar rates. The posterior distribution of
PDMR overlaps zero and places little probability on differen-
ces greater than about 10% in either organ (Fig. 9; c—d, blue
and red curves). For X-linked genes, the reference distribution
of mean PDMR suggests little surprise at seeing this pattern
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Fig. 9. The posterior distributions of the percent difference of mean rate (PDMR; equation 1) for transcription factors and non-transcription factors (top
row; A and B) and between X-linked and autosomal genes (bottom row; C and D) in AG (blue) and testis (red). a) The blue distribution gives the percent
difference of the mean rate of TF genes and non-TF genes computed from the posterior sample from the phylogenetic MCMC. As a null reference, the
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point with a line indicates the mean of the distribution. b) shows the same analysis in the testis. c) shows the same analysis but for X-linked/autosomal

PDMR. d) is like C except in the testis.

(Fig. 9; c—d, black curves) when comparing gene partitions
that are random with respect to X-linkage. In summary, the
2 male reproductive organs show little evidence of either slow-
er or faster evolutionary turnover in the expression of
X-chromosomal genes compared to other single-copy gene
families.

Ancestral Transcriptomes of Testes and Accessory
Glands

We used our phylogenetic model to estimate the posterior
probability that each single-copy gene was expressed in the
testes and AGs of the most recent common ancestor of the
11 species in our analysis (i.e. the most recent common ances-
tor of the melanogaster species group). Our model and data
imply, at a probability cutoff of 0.95, that 61% of the single-
copy genes were expressed in the ancestral accessory gland,
and 74% were expressed in the ancestral testis. We also esti-
mated the posterior probability that each gene is actively ex-
pressed in D. melanogaster but was not expressed in the
most recent common ancestor (i.e. that it gained expression
in the testis or AG in the D. melanogaster lineage over the
last ~25MY) by analyzing the joint posterior distribution
of the expression state at the root node of the tree and at
the D. melanogaster tip (supplementary Data file S3,
Supplementary Material online). This analysis implies that at
a probability >0.95, D. melanogaster expresses 19 single-copy
genes in the AG that were not expressed in that organ in
the most recent common ancestor of the melanogaster
species group, while 95 such genes are expressed in the
D. melanogaster testis.

These results raise several questions, in particular—how big
are the changes in transcript abundance associated with the
gain of active expression? Do recently activated genes remain
expressed at levels barely above our probability cut-offs, or
does their expression approach the levels typical of other genes
expressed in that tissue? To address this question, we compared
the expression levels of newly active and ancestrally active genes
in each species in both organs (Fig. 10a,b). Newly active genes

were defined as those that have >0.95 probability of being ON
in the focal species and >0.95 probability of being OFF in the
most recent common ancestor of the 11 species in our study.
Conserved, ancestrally active genes are defined as those with
>0.95 probability of being ON both in the focal species and
in the common ancestor. We estimated the posterior distribu-
tion of the difference in mean log TPM between these 2 groups
using the R package BEST v 0.5.4 (Kruschke 2013) setting de-
fault vague priors (Fig. 10c). Resulting inferences imply that the
2 organs differ in the expression levels of newly active genes. In
testes, such genes have lower expression compared to ancestral-
ly active genes, while in the AG both classes of genes are ex-
pressed at roughly similar levels (Fig. 10). Thus, in at least
some tissues newly activated genes approach typical expression
levels. In fact, some recently activated genes are expressed at
high TPM (Fig. 3,Fig. 8d).

Discussion

In this report, we explored the feasibility of using discretized
RNA-seq data to study the evolutionary turnover of transcrip-
tomes—that is, the gain and loss of tissue-specific expression
by conserved genes. We created an analysis pipeline that fits
discrete trait evolution models to comparative RNA-seq data-
sets. This pipeline translates continuous RNA-seq data to dis-
crete trait data using a Bayesian method for expression state
inference (zigzag; Thompson et al. 2020). To investigate the
co-evolution of transcriptomes across multiple organs, we de-
fined a phylogenetic model of correlated gene expression evo-
lution in 2 or more organs. We demonstrated the power of this
research pipeline by examining 2 rapidly evolving organs in
the Drosophila male reproductive system, namely the acces-
sory glands and the testes.

We first characterized attributes of the 2 organ transcrip-
tomes in each species individually. We estimated that testes ex-
press a greater proportion of the genome compared to
accessory glands, with a proportion of actively expressed
genes falling in the 63-74% range in the testis and 44-59%
in the AG across the 11 species. The level of background
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expression noise (i.e. the fraction of the transcriptome that
does not correspond to actively expressed genes) is similar be-
tween the 2 organs and is below 1% in all species. In other
words, >99% of protein-coding transcripts in cells appear to
be from actively expressed genes.

With our model of correlated transcriptome evolution, we
inferred turnover rates and historical expression states of
8,660 single-copy genes. This inference suggests that the tran-
scriptomes of the two male reproductive organs evolve at simi-
lar overall rates but follow distinct evolutionary paths. The
accessory glands and testes show bursts of rapid transcriptome
turnover at different times and in different parts of the tree.
Among genes, there is greater variation in turnover rates in
the AG than in the testis, indicating a lower baseline rate of
turnover in the AG with a subset of genes showing higher rates
of evolution. We inferred a relatively low correlation in branch
rate between the organs, though the inferences were highly un-
certain. Another type of correlation we did not explore but is
worth mentioning is the gene-level correlation between the or-
gans. In our model we sought to capture a dynamic where an
acceleration in evolution of one organ may correlate with the
rate of evolution of another organ regardless of which genes
are experiencing accelerated evolution. We hope in the future
this model is expanded to include dynamics where genes can
change state in multiple organs simultaneously.

We also demonstrated that we can estimate ancestral tran-
scriptomes with this phylogenetic model. Ancestral state re-
construction methods can be used to estimate tip states for
missing data as well. We performed a leave-k-out experiment
to obtain estimates of the state of genes at the tips which were
“held out” by setting them as missing data. We used these es-
timates to check the consistency between our evolutionary in-
ferences and the state predictions from zigzag. This
experiment indicates a solid degree of consistency with an
average accuracy of 88%. In like fashion, genes that are truly
missing from a dataset either because of missing measure-
ments or because zigzag couldn’t identify their states with suf-
ficient certainty can leverage the information in other species
through phylogenetic relationships to gain more certainty.

We explored the evolutionary patterns of 2 important
classes of genes, transcription factors and X-linked genes, to
test whether they follow distinct evolutionary dynamics com-
pared to the rest of the genome. Transcription factor expres-
sion appears to evolve faster than the non-TF single-copy
genes in the testis, but much slower in the AG. It is interesting
to note that our estimates of the overall transcriptome turn-
over rates are similar for the 2 organs. Given that changes in
TF expression are expected to have a large impact on the tran-
scriptome, this is a curious result. One possibility is that the
gain and loss of TF expression may modulate the expression
levels of genes that are already expressed in the organ, rather
than changing the expression states of genes from off to on or
vice versa. Alternatively, downstream expression changes that
result from TF turnover could be more pronounced in
non-single-copy gene families that undergo duplication and
deletion more frequently. Finally, we note that the posterior
distributions of the mean AG and testis turnover rate are
both fairly wide, and thus moderate to large differences in
rates are plausible. Analysis among more species could help
provide more precise estimates.

Our estimates of evolutionary rates indicate that the “fast-X
effect” on expression levels (Meisel et al. 2012b) doesn’t ne-
cessarily imply a faster rate of transitioning between ON

and OFF among conserved single-copy genes. We find that
X-linked genes turn over at rates not significantly different
from autosomal genes. However, we emphasize that our data-
set consists of conserved single-copy gene families among elev-
en Drosophila species. The fast-X effect may be in part driven
by gene families that are more evolutionarily labile. Gene du-
plication and deletion in some gene families is known to play
an important role in expression evolution (Lynch and Conery
2000; Lynch and Force 2000; Thompson et al. 2016, 2018;
Ebadi et al. 2023).

zigzag allowed us to gain some insight into the representa-
tion of the X and autosomal chromosomes in male organs.
We found that a higher percentage of X-linked genes is ex-
pressed in both organs compared to autosomal genes. How
does this result fit with the large body of research on the re-
verse relationship, that is, how male organ genes are distrib-
uted among the chromosomes? Several studies report that
genes with testis-biased and AG-biased expression tend to be
under-represented on the X chromosome in D. melanogaster
and other Drosopbhila species, suggesting that X-linked genes
with male-specific functions may be disfavored by selection
(Parisi et al. 2004; Vibranovski et al. 2009; Mikhaylova and
Nurminsky 2011; Assis et al. 2012; Meisel et al. 2012a;
Mahadevaraju et al. 2021). This paucity of male-biased genes
on the X chromosome does not necessarily imply that the X
chromosome is under-represented in any given tissue relative
to autosomal genes. These studies also focus on quantitative
expression levels rather than expression states and thus cannot
estimate the proportion of classes of genes (e.g. X-linked
genes) that comprise transcriptomes.

Additionally, we estimate that actively expressed X-linked
genes are expressed at around 30% lower levels than auto-
somal genes in the testis while the 2 types have similar expres-
sion levels in the AG. This whole-organ pattern is expected if
dosage compensation is decreased or the X is silenced in the
male germline (Vibranovski et al. 2009; Meiklejohn et al.
2011; Mahadevaraju et al. 2021; Witt et al. 2021; Wei et al.
2024).

Challenges and Pitfalls

Different dimensions of the dataset are informative about dif-
ferent model parameters. An obvious question is how this type
of analysis is influenced by the number of species, genes and
biological replicates per species. The first step in our analysis
pipeline estimates the expression state of genes from replicated
continuous (TPM) data. Four samples per species appear to be
sufficient for zigzag, as we find that increasing the number of
samples further provides only marginally more precise esti-
mates (Thompson et al. 2020). As for the number of taxa,
we found that with just 11 species, two organs, and 8,660
genes, we were able to detect differences in the mode and tem-
po of transcriptome turnover both between tree branches and
between organs. However, many model parameters of inter-
est, such as the correlation of turnover rates between the 2 or-
gans, have posterior distributions that are quite wide. This is
also true for the turnover rates of individual genes parameter-
ized in the among-site rate variation model. Datasets contain-
ing more species should better resolve these parameters and
shed light on the answers to many other important questions
relating to transcriptome evolution while allowing for
richer and biologically realistic models of regulatory evolu-
tion. In summary, gene-level parameter estimates should bene-
fit primarily from more species, while transcriptome-level
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parameters should benefit from more species as well as from
including more genes in the analysis.

The first point of failure in any comparative transcriptome
study is dissection of biological samples. Because “compara-
tive” assumes homology, it is crucial that RNA samples are
isolated from truly homologous tissues. This is not a trivial
problem if the organ system under study changes structure fre-
quently and/or is not defined in a consistent way among spe-
cies. It is easy to imagine scenarios where it is difficult to
distinguish the evolutionary co-option of new genes in a tran-
scriptome from differential contamination by other tissues
and cells in a subset of species. We took many precautions
with the accessory glands and testis at several steps in our ana-
lysis pipeline to detect and mitigate potential artifacts emanat-
ing from dissection error. Our analysis of individual gene
expression patterns suggests that cross-tissue contamination
is not a major source of artifacts in this study. Nevertheless,
it is important to consider this potential source of erroneous
inference in all comparative transcriptome analyses, whether
qualitative or quantitative.

The next set of challenges emerge from how expression is
defined and quantified. Similar to comparative analyses that
treat gene expression as a continuous character, evolutionary
inference of discrete expression states is fraught with potential
artifacts emanating from the data processing pipeline
(Khaitovich et al. 2005; Harrison et al. 2012; Romero et al.
2012; Rohlfs et al. 2014; Dimayacyac et al. 2023; Pal et al.
2023). The most obvious factors to influence results would
be genome assembly and annotation quality. If some species
have few reads mapping to an ortholog because the gene
was not correctly assembled or given an incorrect annotation,
that could obviously influence the inferred expression state
and comparative patterns for that gene.

Tip state uncertainty poses another set of challenges that re-
quire validation and innovation. The posterior probability of
active expression is continuous, which requires discretization
for trait models that do not account for tip state uncertainty.
This necessitated using a probability threshold, a. We con-
ducted a leave-k-out validation experiment to evaluate sensi-
tivity to probability thresholds and selected a conservative
threshold for downstream analysis. A more robust method
would average over tip state uncertainty during inference
(Liebeskind et al. 2019; Beaulieu and O’Meara 2024).
Although most genes in our dataset had highly certain states,
this may not hold true for many datasets.

An essential assumption for conducting a macroevolution-
ary analysis is that expression states of genes do not vary
among populations in each species, which may not be the
case for some genes (Cridland et al. 2020). Our approach to
this problem was to sample 2 distinct populations in each spe-
cies and then run a leave-one-library-out zigzag analysis to see
which genes are sensitive to the exclusion of individual librar-
ies (see Methods).

Our use of a new method for classifying gene expression
states, zigzag, requires careful model checking, sensitivity
tests, and validation; indeed, posterior predictive checks and
cross-validations are essential for any study seeking to com-
bine numerous complex models in an inference pipeline. Our
sensitivity and posterior predictive checks and cross-
validation experiments suggest some robustness. However, it
can be difficult to know how robust the inferences are because
when it comes to expression states of genes, ground truths are
themselves inferences under models. The fact that we observe
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an 88% probability of agreement between evolutionary pre-
dictions of the expression states of hold-out genes and the
zigzag predictions of their expression states (supplemental
text S1, Supplementary Material online) appears to be a
good indication that our analysis is providing a fair approxi-
mation of the expression states and evolutionary processes be-
hind the comparative expression patterns in our data.
However, interpreting this result requires care, and we encour-
age others to critically explore potential weaknesses that may
exist in this approach.

As in any comparative study, our results depend on the ac-
curacy with which species relationships are inferred. We treat
the species tree and root age as known, when in fact these are
estimates and thus have some unmodeled level of uncertainty
around them. We have high confidence in the tree topology,
since it is similar to the phylogeny based on hundreds of loci
distributed across the entire genome (Suvorov et al. 2021).
On the other hand, the estimates of node ages in Drosophila
are notoriously uncertain due to the dearth of fossil calibration
points (Suvorov et al. 2021). Including this uncertainty may
decrease the precision of posterior estimates of branch rates.

Another critical assumption in our methods (as in other ana-
lyses of gene expression evolution) is that each gene is evolving
independently. This is a convenient simplifying assumption of
the phylogenetic inference model. However, it is unknown
how much bias emanates from this simplification for tran-
scriptome evolution, where this is obviously not true given
the regulatory interactions among genes. If the expression
state of the average gene is governed by a complex interaction
of numerous genes, then this assumption of independence may
be a reasonable approximation. However, if many genes are
highly sensitive to the state of a small number of genes, this as-
sumption may result in misleading inferences.

Future Directions

The first step toward identifying causal mechanisms is to find
patterns of correlation. While quantitative changes in gene ex-
pression are both highly prevalent and affect adaptive pheno-
types, qualitative gain or loss of gene expression can, like gene
deletion and duplication, have especially profound conse-
quences for organ structure and function (Gompel et al.
2005; Rebeiz et al. 2009; Chan et al. 2010; Fraser et al.
2010; Arnoult et al. 2013; Loehlin et al. 2019; Kowalczyk
etal. 2022; Marand et al. 2023). Potential cases of association
between genetic and phenotypic change can be identified by
phylogenetic analysis: if a gene was activated or inactivated
on the branch where a new phenotype evolved, that gene
may be part of a tissue-specific regulatory pathway mediating
the evolutionary change. In this study, we took a step toward a
systematic comparative analysis of gene expression states by
developing a method for quantifying the rate of transcriptome
turnover on phylogenies. In the future, we can build upon this
foundation to map the transitions between active and inactive
gene expression states to specific branches of species trees.
This approach is likely to provide new insights into the regu-
latory mechanisms driving phenotypic evolution.

This study focuses only on single-copy gene families, which
comprise slightly over half of the genome and may not be rep-
resentative of the transcriptome as a whole. Gene families with
unstable sizes (those undergoing frequent gene duplications
and losses) may also be subject to faster regulatory turnover
(Lynch and Conery 2000; Lynch and Force 2000; Makino
and McLysaght 2010; Thompson et al. 2016; Ebadi et al.

G20z aunp g0 uo 1senb Aq §9¥1.G1.8/90 LFESW/S/Z/ol0IE/aqU/Wod dNo-olWspeoe)/:Sdly Wolj papeojumoq


http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf106#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf106#supplementary-data

Quantifying Transcriptome Turnover on Phylogenies - https://doi.org/10.1093/molbev/msaf106 15

2023). This is perhaps one of the greatest weaknesses of evo-
lutionary studies that require filtering the dataset to single-
copy gene families. As more species are added, the dataset
becomes more enriched for evolutionarily stable gene families.
This means as the power of our inferences increase, the gener-
ality of those inferences likely decreases. To fully understand
how organ function evolves, it is essential to characterize the
role of structural changes to the genome in transcriptome turn-
over. This means we should develop models that integrate evo-
lutionary processes that add and remove genes from the
genome with regulatory processes that turn genes on and
off. Though challenging, solving this problem will uncover
complex relationships, such as those between gene duplication
and expression changes or regulatory inactivation and gene
loss. As genome annotations improve, expression estimation
becomes more precise, and new evolutionary models are de-
veloped, we anticipate many novel and intriguing questions
will arise from expression state evolution research.

Methods

RNA Sequencing and Expression Estimation

D. melanogaster testis expression estimates were obtained
from Thompson et al. (2020). All other RNA-seq libraries
from testes and accessory glands were created and analyzed
using the same methods as in Thompson et al. (2020). In brief,
mRNA from each organ was extracted from approximately 25
mixed-stage adult male flies. At least 2 biological replicates
each from the genome reference strain (used for genome as-
sembly and annotation) and from a second, non-reference
strain were obtained. Sequencing was performed on either a
HiSeq2500, 3,000, or 4,000 (see the supplemental methods
$2.3.2, Supplementary Material online of Thompson et al.
2020). We mapped paired-end reads to published genome an-
notations (see Table 3) using STAR v. 2.5.3 (Dobin et al.
2013). We assembled reference-only transcripts using
Stringtie v. 2.1.4 (Pertea et al. 2015) and estimated transcript
abundance in transcripts per million (TPM). Suppl. table S1,
Supplementary Material online provides more details about
samples.

Expression State Inference

We used the R package zigzag (Thompson et al. 2020) v.1.0.0
to infer gene expression states from TPM values from multiple
biological replicates (libraries) of each tissue and species.
zigzag assumes that inactive and active genes are drawn
from distinct distributions in a mixture model, which are ap-
proximately normal and overlap to varying degrees depending
on the tissue and species. The model also assumes that individ-
ual libraries (biological replicates) are noisy samples from the
combined inactive and active distributions of the mixture
model. Importantly, zigzag assumes that the latent true ex-
pression state of each gene is shared among all biological rep-
licates. Increasing numbers of libraries therefore increases the
certainty about the expression states of genes. Table 4 shows
the prior settings assumed for the accessory glands and the
testis.

We updated zigzag (v1.0.0) so that all mixture components
could share a single variance parameter. This significantly im-
proves MCMC convergence and efficiency with apparently lit-
tle impact on inference for our samples. Additionally, the
previous default model (v0.1.0) allowing the variances to
vary between inactive and active components puts positive

Table 3. Genome and annotation information

Species Genome release

. melanogaster r6.12
simulans r2.02
yakuba r1.05
eugracilis Deug_2.0
biarmipes Dbia_2.0
takahashii Dtak_2.0
ficusphila Dfic_2.0
kikkawai Dkik_2.0
elegans Dele_2.0
. ananassae r1.05
. bipectinata Dbip_2.0

SISESISESESE R R RV

Table 4. Summary of zigzag prior distributions

Parameter Distribution Distribution
Type Parameters

Description

Baseline variance
in expression
Influence of
expression level
on variance
Variation in
gene-specific
variance
Proportional to
library dropout
rate
on Beta p=2 Proportion active
ot Beta =1,p5=1 Proportional
within active
subcomponent k
a=1,p4=1 Spike
probabililty (true
TPM = 0)
Mean of active
component al
Mean of active
component a2
Mean of active
component a3
(testis only)
Mean of inactive
component
Variance
parameter shared
by
all mixture
components

s Normal u=-1,0=2

—s1 Exponential A=2

T Exponential A=1

ay Exponential

p Beta

sy —1 Exponential A=1/3

U —4 Exponential A=1/3

U3 — 6 Exponential A=1/3

—U; Exponential A=1/3

o logUniform  log (min) =1log (0.01),

log (max ) =log (5)

prior probability on unrealistic models where, for example,
if the variance of the inactive component is much higher
than the active component(s), genes with very high expression
could be assigned to the inactive component. Two independ-
ent MCMC chains were run for 25,000 cycles, sampled every
5 cycles, and compared for convergence by measuring PSRF
(Brooks and Gelman 1998). A PSRF close to 1 and < 1.2 is
considered a good convergence. All parameters for both or-
gans had PSRF <1.2.

Proportion of transcripts from Inactive Genes. The propor-
tion of protein-coding gene transcripts emanating from in-
active genes is computed from the posterior distribution of
the latent mixture model implemented in zigzag. The model
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comprises two primary distributions: an inactive distribution
characterized by lower mean expression levels and an active
distribution with higher mean expression levels.

The inactive distributions is modeled as a spike-and-slab
distribution, consisting of a point mass at TPM =0 with pro-
portion of inactive genes in the spike denoted by p and a log-
normal distribution with a log-mean of 4; for inactive genes
with leaky expression (TPM > 0). In contrast, the active com-
ponent is a mixture of one or more log-normal distributions,
each with log-mean(s) u, > ;. All log-normal distributions
share a common log-standard deviation parameter, o. For de-
tailed information about the model, refer to the supplementary
text, Supplementary Material online of Thompson et al. (2020).

The proportion of protein-coding transcripts originating
from inactive genes is computed from the latent mixture model
parameters, 6, and is denoted by d(8). This proportion is given
by the weighted mean of the log-normal component of the in-
active distribution divided by the weighted average of the ex-
pectation of all components that produce transcripts
(TPM > 0):

(1-p)(1 — @, )e

5(0) = 12 +o2
(1=p)(1 — wa)e" 2" + wy >y wp '™

(2)

where ¢t is the mean of a log-normal distribution. Table 4
provides descriptions of the parameter symbols used.

The proportion averaged over the posterior uncertainty
of the latent mixture model parameters, 8, is obtained by
computing the mean of § from N draws of 8 from the
MCMC:

1 N
Fox[0(0)] ~ 1 ) o(6). (3)
i=1

Model Adequacy and Validation. We used posterior pre-
dictive simulation to select a set of hyperparameters and
number of mixture components that do not inappropriately
influence the posterior. With zigzag’s posterior predictive
simulation setting we simulated library expression distribu-
tions and compared them to the data distributions through
plots to select appropriate mixture distributions and prior
thresholds (supplementary Data File S1, Supplementary
Material online, upper-level plots). We found that 2 active
mixture components for the accessory glands and 3 for the
testis worked well. We visually analyzed posterior predict-
ive plots output by zigzag and found that the simulated li-
brary distributions from testes matched very closely with
the data, while the accessory glands showed a much weaker
match in many of the species (supplementary Data File S1,
Supplementary Material online lower-level (library-
specific) plots).

We checked the sensitivity of all genes to this mismatch to
see which genes may violate the assumption of the same ex-
pression state in all replicate samples by performing
leave-one-library-out analysis. Each library was removed
from the set and expression state probabilities were reesti-
mated. Thus, for a set of 4 replicate libraries, we obtained 4
expression state probabilities for each gene. Any gene where
the difference between the maximum and minimum prob-
ability of active expression was >0.25 was treated as un-
known for downstream analyses. The accessory glands
contained many more such genes (58-1049) than the testis
(39-116). This could be due to the greater challenge of dis-
secting the AG cleanly and the presence of contaminants
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from neighboring tissues, which we expect to be more vari-
able among replicates.

Orthology Table and Species Tree Inference

An orthology table was estimated using OrthoFinder v. 2.4.0
with default settings (Emms and Kelly 2019). This produced
15,322 gene families including 8,660 conserved single-copy
families (i.e. one gene per family in each of the 11 species),
constituting 56% of all genes. A comprehensive list of
D. melanogaster transcription factors was downloaded from
FlyMine.org. Of the 757 TFs, 75% were in single-copy gene
families.

The phylogenetic tree of the 11 Drosophila species was in-
ferred using RevBayes (Hohna et al. 2016). The goal was to
create a species tree with accurate relative node ages (branch
lengths in time units rather than expected number of nucleo-
tide substitutions) that could then be treated as fixed in the
phylogenetic analysis of gene expression states. To construct
this tree, we used 12 conserved single-copy genes from the da-
taset that was used to infer a Drosopbila chronogram by
Turelli et al. (2018). In each species, we used the isoform
with the longest protein sequence of the following genes:
Ald1, bed, Eno, esc, Glyp, Glys, ninaE, Pepckl, Pgi, pic,
Tpi, and Taldo. Mafft v.7.471 on auto settings was used to
align each set of 11 homologous proteins, followed by pal2nal
v.14 (Suyama et al. 2006) to convert protein alignments into
codon alignments. All codon alignments were then partitioned
by codon position for phylogenetic analysis, yielding a dataset
with 36 partitions.

All phylogenetic analyses were conducted in RevBayes
v. 1.1.0. Posterior samples of relative chronograms were si-
mulated under three clock models: a global clock (one rate
for the whole tree), uncorrelated relaxed clock (UCLN)
with one rate for each branch which is uncorrelated with
neighboring branches, and an autocorrelated relaxed clock
model (ACLN) where neighboring branch rates were corre-
lated (Drummond et al. 2006). All partitions were assumed
to evolve at the same clock rate on each branch, with root
age set to 1. All 3 models assumed the same substitution
model for each individual partition (3 partitions per gene
for 12 genes): GTR + G + I, with G having 4 rates that are
distributed according to a discretized Gamma distribution
with mean set to 1 and I being the proportion of invariant
sites.

For the tree prior in all analyses, we assumed the sampled
birth-death model of Yang and Rannala (1997). For the strict
and uncorrelated analyseOs, the number of species in the clade
that spans the sampled species was assumed to be around 220-
240, which is slightly larger than the number of described spe-
cies in the melanogaster species group (spanning the clade
from D. ananassae to D. melanogaster). We averaged over
this uncertainty by specifying an informative prior of
Gamma (529, 2.3). MCMCs were run for 75,000 generations
with 10% burnin. ESS was checked so that all parameters had
ESS > 150. Multiple independent MCMCs converged on iden-
tical posterior distributions for parameters and trees in each
model.

We inferred the topology of the tree under an uncorre-
lated relaxed clock model which supported the phylogeny
used with at least 0.92 posterior probability at each branch
except for the placement of D. kikkawai, which was equal-
ly likely placed with the (D. anannassae + D. bipectinata)
clade as with the other clade at the first post-root split.
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To estimate branch lengths under a more realistic autocor-
related relaxed clock model, we selected the topology that
placed D. kikkawai basal to the other 9 species (Suvorov
et al. 2021) and treated that as fixed. The tree topology
matched almost exactly the topology that was recovered
in a larger analysis that included >100 species and several
hundred conserved dipteran BUSCO genes (Suvorov et al.
2021). The one difference was the locations of D. elegans
and D. ficusphila, which are reversed in our UCLN analysis
with posterior probability = 0.92 on the branch separating
the two. The maximum a posteriori (MAP) tree with UCLN
MAP estimate of topology and ACLN MAP estimate of
branch lengths was used for subsequent analyses of tran-
scriptome evolution.

Transcriptome Evolution Inference

We modeled the evolution of gene expression states as a
continuous-time Markov chain (CTMC) with 2 states, {OFF,
ON}. The transition rates between these states vary across
genes and branches of the phylogenetic tree. Additionally,
the branch-specific rates are correlated between the 2 organs.

Relative rates model

We assume that the process is at stationarity over the time
scale of the whole tree, with genes at the root being active
(ON) in organ 7 with frequency x;, where i indexes the organs
{AG, Testis}. The relative transition rate matrix, Q;, is parame-
terized by z; such that the mean transition rate across all genes
is one (Yang 1994). Specifically,

7 Q,, +(1-m)Q;, =1,
where Q; , is proportional to the rate at which genes are acti-
vated (turned ON), and Q,,, is proportional to the rate at

which genes are deactivated (turned OFF). The relative rate
matrix is therefore:

1

Q=] 21-m) |,

2_7r,- —

where dashes along the diagonal are set so that rows sum to
zero.

Among-gene rate variation model

To model rate variability among genes, we specified a scale
factor, aj 4, to scale the relative rate matrix, Q; for each gene,
g. This variable is drawn from a discretized gamma distribu-
tion with mean fixed to 1 (Yang 1994):

aj g ~ DiscretizedGamma(a =&, =&, k=6).

Here, the distribution is a mixture model in which a gamma
distribution, with mean a/f=1 and variance a/f*=1/&,
and is divided into k = 6 intervals of equal probability mass.
The mixture weights are thus 1/6. The rate category at each
interval is the mean rate for that interval. &; is the precision
of the distribution.

Among-branch rate heterogeneity model

In our model of turnover rate heterogeneity across branches of
the tree, the evolutionary rates for both organs on each branch
follow a bivariate log-normal distribution. The distribution of

Table 5. Summary of the probabilistic model parameters and their
distributions or definitions

Parameter  Distribution Distribution Description
Type Parameters
. Beta a=p=1 Frequency genes at
the root are active
& LogNormal  logmean = [n(5), Precision of the
logsd = 0.587 discretized gamma
distribution of a;,
) Uniform min=— 10, Log mean branch
max =1 scale parameter
aj Beta a=2,p=2 Proportional mean
rates of 2 organs
1 Defined ¢ +1In(2a;) Log mean branch
rate of organ i
0 LogUniform min=0.0001, Branch rate variance
max =5 scale parameter
B Beta a=10,8=10  Proportional branch
rate variance
; Defined 0+2p; Variance of branch
rates of organ i
C LK]J n=1 Correlation matrix
S Defined <01 0 ) Organ branch rate
0 o L
standard deviation
z Defined SCS Covariance matrix

The LK] distribution is the Lewandowski-Kurowicka-Joe distribution
(Lewandowski et al. 2009).

the bivariate log-transformed rates, log 1y, for the 2 organs on
branch b are given by:

lOg I, ~ MVN(”; X),

The transition rate matrix for gene, g, in organ, i, on branch, b,
is thus equal to

7 p2ig Q.

We summarize the prior distributions for the paramaters of
the above model in Table 5:

Markov Chain Monte Carlo (MCMC)

We sampled from the model posterior using RevBayes (Hohna
etal. 2016). After an initial burnin period, we ran the MCMC
for 10,000 generations sampling every 5 generations. We con-
firmed that two independent runs converged by measuring the
PSRF for all parameters and checking that it was < 1.2. We
also checked that ESS was at least 200.

GO Analysis

GO analyses were performed in R v4.1.1 using clusterProfiler
(v4.0.5; Yu et al. 2012). Outputs were plotted using
clusterProfiler, ggplot2 (v3.4.4), and ggVennDiagram (v1.5.2;
Gao et al. 2021 ). Ontogeny was limited to “Biological
Process” and a Benjamini-Hochberg procedure was used to cor-
rect for the false discovery rate. A g-value cutoff of 0.05 was
used. The org.Dm.eg.db (v3.13.0) package was used for gene
annotation data.

BEST Analysis

The prior distributions and data distribution assumed in BEST
(Kruschke 2013) are listed in Table 6.
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Table 6. Summary of the probabilistic model parameters and distributions
with specified priors

Parameter Distribution  Distribution Parameters Description
Type
1 Normal w=mean(logy), Mean of
o=sd(logy;)x 1,000 group 1
Uy Normal 1 =mean(logys), Mean of
o=sd(logy,)x 1,000 group 2
o1 Uniform min=sd(logy;)/1,000, Standard
max=sd(logy;)x 1,000  deviation of
group 1
o Uniform min=sd(logy,)/1,000, Standard
max=sd(logy,) x 1,000  deviation of
group 2
v-1 Exponential rate=1/29 Degrees of
freedom for
the
t-distribution
(shifted by 1)
Y1 t-distribution U=, 0=01, V=V Observed data
for group 1
y2 t-distribution U=l 6=02, V=V Observed data
for group 2

Supplementary Material

Supplementary material is available at Molecular Biology and
Evolution online.
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